Cargando…

Prognostic Accuracy of CTP Summary Maps in Patients with Large Vessel Occlusive Stroke and Poor Revascularization after Mechanical Thrombectomy—Comparison of Three Automated Perfusion Software Applications

Background: Innovative automated perfusion software solutions offer support in the management of acute stroke by providing information about the infarct core and penumbra. While the performance of different software solutions has mainly been investigated in patients with successful recanalization, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Muehlen, Iris, Borutta, Matthias, Siedler, Gabriela, Engelhorn, Tobias, Hock, Stefan, Knott, Michael, Hoelter, Philip, Volbers, Bastian, Schwab, Stefan, Doerfler, Arnd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149832/
https://www.ncbi.nlm.nih.gov/pubmed/35645395
http://dx.doi.org/10.3390/tomography8030109
_version_ 1784717287745388544
author Muehlen, Iris
Borutta, Matthias
Siedler, Gabriela
Engelhorn, Tobias
Hock, Stefan
Knott, Michael
Hoelter, Philip
Volbers, Bastian
Schwab, Stefan
Doerfler, Arnd
author_facet Muehlen, Iris
Borutta, Matthias
Siedler, Gabriela
Engelhorn, Tobias
Hock, Stefan
Knott, Michael
Hoelter, Philip
Volbers, Bastian
Schwab, Stefan
Doerfler, Arnd
author_sort Muehlen, Iris
collection PubMed
description Background: Innovative automated perfusion software solutions offer support in the management of acute stroke by providing information about the infarct core and penumbra. While the performance of different software solutions has mainly been investigated in patients with successful recanalization, the prognostic accuracy of the hypoperfusion maps in cases of futile recanalization has hardly been validated. Methods: In 39 patients with acute ischemic stroke (AIS) due to large vessel occlusion (LVO) in the anterior circulation and poor revascularization (thrombolysis in cerebral infarction (TICI) 0-2a) after mechanical thrombectomy (MT), hypoperfusion analysis was performed using three different automated perfusion software solutions (A: RAPID, B: Brainomix e-CTP, C: Syngo.via). The hypoperfusion volumes (HV) as Tmax > 6 s were compared with the final infarct volumes (FIV) on follow-up CT 36–48 h after futile recanalization. Bland–Altman analysis was applied to display the levels of agreement and to evaluate systematic differences. Based on the median hypoperfusion intensity ratio (HIR, volumetric ratio of tissue with a Tmax > 10 s and Tmax > 6 s) patients were dichotomized into high- and low-HIR groups. Subgroup analysis with favorable (<0.6) and unfavorable (≥0.6) HIR was performed with respect to the FIV. HIR was correlated to clinical baseline and outcome parameters using Pearson’s correlation. Results: Overall, there was good correlation without significant differences between the HVs and the FIVs with package A (r = 0.78, p < 0.001) being slightly superior to B and C. However, levels of agreement were very wide for all software applications in Bland-Altman analysis. In cases of large infarcts exceeding 150 mL the performance of the automated software solutions generally decreased. Subgroup analysis revealed the FIV to be generally underestimated in patients with HIR ≥ 0.6 (p < 0.05). In the subgroup with favorable HIR, however, there was a trend towards an overestimation of the FIV. Nevertheless, packages A and B showed good correlation between the HVs and FIVs without significant differences (p > 0.2), while only package C significantly overestimated the FIV (−54.6 ± 56.0 mL, p = 0.001). The rate of modified Rankin Scale (mRS) 0–3 after 3 months was significantly higher in favorable vs. unfavorable HIR (42.1% vs. 13.3%, p = 0.02). Lower HIR was associated with higher Alberta Stroke Program Early CT Score (ASPECTS) at presentation and on follow-up imaging, lower risk of malignant edema, and better outcome (p < 0.05). Conclusion: Overall, the performance of the automated perfusion software solutions to predict the FIV after futile recanalization is good, with decreasing accuracy in large infarcts exceeding 150 mL. However, depending on the HIR, FIV can be significantly over- and underestimated, with Syngo showing the widest range. Our results indicate that the HIR can serve as valuable parameter for outcome predictions and facilitate the decision whether or not to perform MT in delicate cases.
format Online
Article
Text
id pubmed-9149832
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91498322022-05-31 Prognostic Accuracy of CTP Summary Maps in Patients with Large Vessel Occlusive Stroke and Poor Revascularization after Mechanical Thrombectomy—Comparison of Three Automated Perfusion Software Applications Muehlen, Iris Borutta, Matthias Siedler, Gabriela Engelhorn, Tobias Hock, Stefan Knott, Michael Hoelter, Philip Volbers, Bastian Schwab, Stefan Doerfler, Arnd Tomography Article Background: Innovative automated perfusion software solutions offer support in the management of acute stroke by providing information about the infarct core and penumbra. While the performance of different software solutions has mainly been investigated in patients with successful recanalization, the prognostic accuracy of the hypoperfusion maps in cases of futile recanalization has hardly been validated. Methods: In 39 patients with acute ischemic stroke (AIS) due to large vessel occlusion (LVO) in the anterior circulation and poor revascularization (thrombolysis in cerebral infarction (TICI) 0-2a) after mechanical thrombectomy (MT), hypoperfusion analysis was performed using three different automated perfusion software solutions (A: RAPID, B: Brainomix e-CTP, C: Syngo.via). The hypoperfusion volumes (HV) as Tmax > 6 s were compared with the final infarct volumes (FIV) on follow-up CT 36–48 h after futile recanalization. Bland–Altman analysis was applied to display the levels of agreement and to evaluate systematic differences. Based on the median hypoperfusion intensity ratio (HIR, volumetric ratio of tissue with a Tmax > 10 s and Tmax > 6 s) patients were dichotomized into high- and low-HIR groups. Subgroup analysis with favorable (<0.6) and unfavorable (≥0.6) HIR was performed with respect to the FIV. HIR was correlated to clinical baseline and outcome parameters using Pearson’s correlation. Results: Overall, there was good correlation without significant differences between the HVs and the FIVs with package A (r = 0.78, p < 0.001) being slightly superior to B and C. However, levels of agreement were very wide for all software applications in Bland-Altman analysis. In cases of large infarcts exceeding 150 mL the performance of the automated software solutions generally decreased. Subgroup analysis revealed the FIV to be generally underestimated in patients with HIR ≥ 0.6 (p < 0.05). In the subgroup with favorable HIR, however, there was a trend towards an overestimation of the FIV. Nevertheless, packages A and B showed good correlation between the HVs and FIVs without significant differences (p > 0.2), while only package C significantly overestimated the FIV (−54.6 ± 56.0 mL, p = 0.001). The rate of modified Rankin Scale (mRS) 0–3 after 3 months was significantly higher in favorable vs. unfavorable HIR (42.1% vs. 13.3%, p = 0.02). Lower HIR was associated with higher Alberta Stroke Program Early CT Score (ASPECTS) at presentation and on follow-up imaging, lower risk of malignant edema, and better outcome (p < 0.05). Conclusion: Overall, the performance of the automated perfusion software solutions to predict the FIV after futile recanalization is good, with decreasing accuracy in large infarcts exceeding 150 mL. However, depending on the HIR, FIV can be significantly over- and underestimated, with Syngo showing the widest range. Our results indicate that the HIR can serve as valuable parameter for outcome predictions and facilitate the decision whether or not to perform MT in delicate cases. MDPI 2022-05-17 /pmc/articles/PMC9149832/ /pubmed/35645395 http://dx.doi.org/10.3390/tomography8030109 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Muehlen, Iris
Borutta, Matthias
Siedler, Gabriela
Engelhorn, Tobias
Hock, Stefan
Knott, Michael
Hoelter, Philip
Volbers, Bastian
Schwab, Stefan
Doerfler, Arnd
Prognostic Accuracy of CTP Summary Maps in Patients with Large Vessel Occlusive Stroke and Poor Revascularization after Mechanical Thrombectomy—Comparison of Three Automated Perfusion Software Applications
title Prognostic Accuracy of CTP Summary Maps in Patients with Large Vessel Occlusive Stroke and Poor Revascularization after Mechanical Thrombectomy—Comparison of Three Automated Perfusion Software Applications
title_full Prognostic Accuracy of CTP Summary Maps in Patients with Large Vessel Occlusive Stroke and Poor Revascularization after Mechanical Thrombectomy—Comparison of Three Automated Perfusion Software Applications
title_fullStr Prognostic Accuracy of CTP Summary Maps in Patients with Large Vessel Occlusive Stroke and Poor Revascularization after Mechanical Thrombectomy—Comparison of Three Automated Perfusion Software Applications
title_full_unstemmed Prognostic Accuracy of CTP Summary Maps in Patients with Large Vessel Occlusive Stroke and Poor Revascularization after Mechanical Thrombectomy—Comparison of Three Automated Perfusion Software Applications
title_short Prognostic Accuracy of CTP Summary Maps in Patients with Large Vessel Occlusive Stroke and Poor Revascularization after Mechanical Thrombectomy—Comparison of Three Automated Perfusion Software Applications
title_sort prognostic accuracy of ctp summary maps in patients with large vessel occlusive stroke and poor revascularization after mechanical thrombectomy—comparison of three automated perfusion software applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149832/
https://www.ncbi.nlm.nih.gov/pubmed/35645395
http://dx.doi.org/10.3390/tomography8030109
work_keys_str_mv AT muehleniris prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications
AT boruttamatthias prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications
AT siedlergabriela prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications
AT engelhorntobias prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications
AT hockstefan prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications
AT knottmichael prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications
AT hoelterphilip prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications
AT volbersbastian prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications
AT schwabstefan prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications
AT doerflerarnd prognosticaccuracyofctpsummarymapsinpatientswithlargevesselocclusivestrokeandpoorrevascularizationaftermechanicalthrombectomycomparisonofthreeautomatedperfusionsoftwareapplications