Cargando…
Methylglyoxal and glyoxalase 1—a metabolic stress pathway-linking hyperglycemia to the unfolded protein response and vascular complications of diabetes
The study of the glyoxalase system by Thornalley and co-workers in clinical diabetes mellitus and correlation with diabetic complications revealed increased exposure of patients with diabetes to the reactive, dicarbonyl metabolite methylglyoxal (MG). Twenty-eight years later, extended and built on b...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152679/ https://www.ncbi.nlm.nih.gov/pubmed/35635155 http://dx.doi.org/10.1042/CS20220099 |
Sumario: | The study of the glyoxalase system by Thornalley and co-workers in clinical diabetes mellitus and correlation with diabetic complications revealed increased exposure of patients with diabetes to the reactive, dicarbonyl metabolite methylglyoxal (MG). Twenty-eight years later, extended and built on by Thornalley and co-workers and others, the glyoxalase system is an important pathway contributing to the development of insulin resistance and vascular complications of diabetes. Other related advances have been: characterization of a new kind of metabolic stress—‘dicarbonyl stress’; identification of the major physiological advanced glycation endproduct (AGE), MG-H1; physiological substrates of the unfolded protein response (UPR); new therapeutic agents—‘glyoxalase 1 (Glo1) inducers’; and a refined mechanism underlying the link of dysglycemia to the development of insulin resistance and vascular complications of diabetes. |
---|