Cargando…
Systematic evaluation of computational tools to predict the effects of mutations on protein stability in the absence of experimental structures
Changes in protein sequence can have dramatic effects on how proteins fold, their stability and dynamics. Over the last 20 years, pioneering methods have been developed to try to estimate the effects of missense mutations on protein stability, leveraging growing availability of protein 3D structures...
Autores principales: | Pan, Qisheng, Nguyen, Thanh Binh, Ascher, David B, Pires, Douglas E V |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155634/ https://www.ncbi.nlm.nih.gov/pubmed/35189634 http://dx.doi.org/10.1093/bib/bbac025 |
Ejemplares similares
-
Characterization on the oncogenic effect of the missense mutations of p53 via machine learning
por: Pan, Qisheng, et al.
Publicado: (2023) -
DDMut: predicting effects of mutations on protein stability using deep learning
por: Zhou, Yunzhuo, et al.
Publicado: (2023) -
Structure-guided machine learning prediction of drug resistance mutations in Abelson 1 kinase
por: Zhou, Yunzhuo, et al.
Publicado: (2021) -
DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach
por: Pires, Douglas E.V., et al.
Publicado: (2014) -
A bias of Asparagine to Lysine mutations in SARS-CoV-2 outside the receptor binding domain affects protein flexibility
por: Boer, Jennifer C., et al.
Publicado: (2022)