Cargando…
Synthesizing controlled microstructures of porous media using generative adversarial networks and reinforcement learning
For material modeling and discovery, synthetic microstructures play a critical role as digital twins. They provide stochastic samples upon which direct numerical simulations can be conducted to populate material databases. A large ensemble of simulation data on synthetic microstructures may provide...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156766/ https://www.ncbi.nlm.nih.gov/pubmed/35641549 http://dx.doi.org/10.1038/s41598-022-12845-7 |