Cargando…
Synthesizing controlled microstructures of porous media using generative adversarial networks and reinforcement learning
For material modeling and discovery, synthetic microstructures play a critical role as digital twins. They provide stochastic samples upon which direct numerical simulations can be conducted to populate material databases. A large ensemble of simulation data on synthetic microstructures may provide...
Autores principales: | Nguyen, Phong C. H., Vlassis, Nikolaos N., Bahmani, Bahador, Sun, WaiChing, Udaykumar, H. S., Baek, Stephen S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156766/ https://www.ncbi.nlm.nih.gov/pubmed/35641549 http://dx.doi.org/10.1038/s41598-022-12845-7 |
Ejemplares similares
-
Shear Wave Splitting and Polarization in Anisotropic Fluid-Infiltrating Porous Media: A Numerical Study
por: De Marchi, Nico, et al.
Publicado: (2020) -
The peritubular reinforcement effect of porous dentine microstructure
por: Wang, Rong, et al.
Publicado: (2017) -
Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials
por: Chun, Sehyun, et al.
Publicado: (2020) -
Effect of Nano-CuO on Engineering and Microstructure Properties of Fibre-Reinforced Mortars Incorporating Metakaolin: Experimental and Numerical Studies
por: Ghanei, Amir, et al.
Publicado: (2017) -
Diagnostic-Quality Guided Wave Signals Synthesized Using Generative Adversarial Neural Networks
por: Heesch, Mateusz, et al.
Publicado: (2022)