Cargando…

Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel

Mechanosensitive channel of large conductance (MscL) detects and responds to changes in the pressure profile of cellular membranes and transduces the mechanical energy into electrical and/or chemical signals. MscL can be activated using ultrasonic or chemical activation methods to improve the absorp...

Descripción completa

Detalles Bibliográficos
Autores principales: Immadisetty, Kalyan, Polasa, Adithya, Shelton, Reid, Moradi, Mahmoud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156883/
https://www.ncbi.nlm.nih.gov/pubmed/35685356
http://dx.doi.org/10.1016/j.csbj.2022.05.022
_version_ 1784718530736816128
author Immadisetty, Kalyan
Polasa, Adithya
Shelton, Reid
Moradi, Mahmoud
author_facet Immadisetty, Kalyan
Polasa, Adithya
Shelton, Reid
Moradi, Mahmoud
author_sort Immadisetty, Kalyan
collection PubMed
description Mechanosensitive channel of large conductance (MscL) detects and responds to changes in the pressure profile of cellular membranes and transduces the mechanical energy into electrical and/or chemical signals. MscL can be activated using ultrasonic or chemical activation methods to improve the absorption of medicines and bioactive compounds into cells. However, re-engineering chemical signals such as pH change can trigger channel activation in MscL. This study elucidates the activation mechanism of an engineered MscL at an atomic level through a combination of equilibrium and non-equilibrium (NE) molecular dynamics (MD) simulations. Comparing the wild-type (WT) and engineered MscL activation processes suggests that the two systems are likely associated with different active states and different transition pathways. These findings indicate that (1) periplasmic loops play a key role in the activation process of MscL, (2) the loss of various backbone-backbone hydrogen bonds and salt bridge interactions in the engineered MscL channel causes the spontaneous opening of the channel, and (3) the most significant interactions lost during the activation process are between the transmembrane helices 1 and 2 in engineered MscL channel. The orientation-based biasing approach for producing and optimizing an open MscL model used in this work is a promising way to characterize unknown protein functional states and investigate the activation processes in ion channels and transmembrane proteins in general. This work paves the way for a computational framework for engineering more efficient pH-sensing mechanosensitive channels.
format Online
Article
Text
id pubmed-9156883
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-91568832022-06-08 Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel Immadisetty, Kalyan Polasa, Adithya Shelton, Reid Moradi, Mahmoud Comput Struct Biotechnol J Research Article Mechanosensitive channel of large conductance (MscL) detects and responds to changes in the pressure profile of cellular membranes and transduces the mechanical energy into electrical and/or chemical signals. MscL can be activated using ultrasonic or chemical activation methods to improve the absorption of medicines and bioactive compounds into cells. However, re-engineering chemical signals such as pH change can trigger channel activation in MscL. This study elucidates the activation mechanism of an engineered MscL at an atomic level through a combination of equilibrium and non-equilibrium (NE) molecular dynamics (MD) simulations. Comparing the wild-type (WT) and engineered MscL activation processes suggests that the two systems are likely associated with different active states and different transition pathways. These findings indicate that (1) periplasmic loops play a key role in the activation process of MscL, (2) the loss of various backbone-backbone hydrogen bonds and salt bridge interactions in the engineered MscL channel causes the spontaneous opening of the channel, and (3) the most significant interactions lost during the activation process are between the transmembrane helices 1 and 2 in engineered MscL channel. The orientation-based biasing approach for producing and optimizing an open MscL model used in this work is a promising way to characterize unknown protein functional states and investigate the activation processes in ion channels and transmembrane proteins in general. This work paves the way for a computational framework for engineering more efficient pH-sensing mechanosensitive channels. Research Network of Computational and Structural Biotechnology 2022-05-23 /pmc/articles/PMC9156883/ /pubmed/35685356 http://dx.doi.org/10.1016/j.csbj.2022.05.022 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Immadisetty, Kalyan
Polasa, Adithya
Shelton, Reid
Moradi, Mahmoud
Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel
title Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel
title_full Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel
title_fullStr Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel
title_full_unstemmed Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel
title_short Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel
title_sort elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156883/
https://www.ncbi.nlm.nih.gov/pubmed/35685356
http://dx.doi.org/10.1016/j.csbj.2022.05.022
work_keys_str_mv AT immadisettykalyan elucidatingthemolecularbasisofspontaneousactivationinanengineeredmechanosensitivechannel
AT polasaadithya elucidatingthemolecularbasisofspontaneousactivationinanengineeredmechanosensitivechannel
AT sheltonreid elucidatingthemolecularbasisofspontaneousactivationinanengineeredmechanosensitivechannel
AT moradimahmoud elucidatingthemolecularbasisofspontaneousactivationinanengineeredmechanosensitivechannel