Cargando…

DIRECT-NET: An efficient method to discover cis-regulatory elements and construct regulatory networks from single-cell multiomics data

The emergence of single-cell multiomics data provides unprecedented opportunities to scrutinize the transcriptional regulatory mechanisms controlling cell identity. However, how to use those datasets to dissect the cis-regulatory element (CRE)–to–gene relationships at a single-cell level remains a m...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lihua, Zhang, Jing, Nie, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159696/
https://www.ncbi.nlm.nih.gov/pubmed/35648859
http://dx.doi.org/10.1126/sciadv.abl7393
Descripción
Sumario:The emergence of single-cell multiomics data provides unprecedented opportunities to scrutinize the transcriptional regulatory mechanisms controlling cell identity. However, how to use those datasets to dissect the cis-regulatory element (CRE)–to–gene relationships at a single-cell level remains a major challenge. Here, we present DIRECT-NET, a machine-learning method based on gradient boosting, to identify genome-wide CREs and their relationship to target genes, either from parallel single-cell gene expression and chromatin accessibility data or from single-cell chromatin accessibility data alone. By extensively evaluating and characterizing DIRECT-NET’s predicted CREs using independent functional genomics data, we find that DIRECT-NET substantially improves the accuracy of inferring CRE-to-gene relationships in comparison to existing methods. DIRECT-NET is also capable of revealing cell subpopulation–specific and dynamic regulatory linkages. Overall, DIRECT-NET provides an efficient tool for predicting transcriptional regulation codes from single-cell multiomics data.