Cargando…
ETMR-11. Transcriptional changes upon knockdown of alteredBCOR/BCORL1 transcripts in preclinical models of CNS embryonal tumors with BCOR-related alterations
BCL-6 transcriptional corepressor (BCOR) is an epigenetic regulator that silences gene expression mainly via the polycomb repressive complex 1.1 (PRC1.1). BCOR genomic alterations are found in a variety of different tumors and recently central nervous system (CNS) tumors with BCOR internal tandem du...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164644/ http://dx.doi.org/10.1093/neuonc/noac079.189 |
_version_ | 1784720183539007488 |
---|---|
author | Piontek, Martin Kirchhofer, Dominik Gabler, Lisa Lötsch-Gojo, Daniela Pirker, Christine Schmitt-Hoffner, Felix Jaunecker, Carola N Kool, Marcel Berger, Walter Gojo, Johannes |
author_facet | Piontek, Martin Kirchhofer, Dominik Gabler, Lisa Lötsch-Gojo, Daniela Pirker, Christine Schmitt-Hoffner, Felix Jaunecker, Carola N Kool, Marcel Berger, Walter Gojo, Johannes |
author_sort | Piontek, Martin |
collection | PubMed |
description | BCL-6 transcriptional corepressor (BCOR) is an epigenetic regulator that silences gene expression mainly via the polycomb repressive complex 1.1 (PRC1.1). BCOR genomic alterations are found in a variety of different tumors and recently central nervous system (CNS) tumors with BCOR internal tandem duplication (ITD) were classified as a distinct molecular subgroup. We established and characterized two cell models derived from BCOR altered CNS tumor patients. One model is characterized by a frameshift mutation in the BCOR gene resulting in the expression of a truncated protein lacking the C-terminal PUFD domain required for correct assembly of the PRC1.1. Additionally, this model harbors a translocation of the BCOR homologue BCORL1. The second model has a characteristic internal tandem duplication (ITD) within the BCOR gene. To study the effects of mutated BCOR/BCORL1 on gene expression, we performed siRNA mediated knockdown of altered BCOR/BCORL1 transcripts in both models and analyzed transcriptional changes by mRNA expression array. Differentially expressed genes in BCOR/BCORL1 knockdown versus wild type conditions were enriched for signaling pathways involved in cell cycle progression, cell growth, DNA replication and cancer. This suggests that the alterations in BCOR/BCORL1 might have pro-oncogenic effects and thereby contribute to the aggressive phenotype of this disease. Especially in the BCOR ITD model knockdown of BCOR led to transcriptional downregulation of genes associated with the development of brain tumors such as FGF18, PDGFA and PDGFRA. Our results indicate that specific BCOR/BCORL1 alterations might impair its endogenous function as transcriptional repressor and deregulate the expression of multiple PRC1.1 target genes. An in depth characterization of epigenetic and transcriptional changes in BCOR/BCORL1 altered CNS tumors could lead to the identification of critical downstream effectors and ultimately reveal new therapeutic vulnerabilities. |
format | Online Article Text |
id | pubmed-9164644 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-91646442022-06-05 ETMR-11. Transcriptional changes upon knockdown of alteredBCOR/BCORL1 transcripts in preclinical models of CNS embryonal tumors with BCOR-related alterations Piontek, Martin Kirchhofer, Dominik Gabler, Lisa Lötsch-Gojo, Daniela Pirker, Christine Schmitt-Hoffner, Felix Jaunecker, Carola N Kool, Marcel Berger, Walter Gojo, Johannes Neuro Oncol ETMR and other Embryonal Tumors BCL-6 transcriptional corepressor (BCOR) is an epigenetic regulator that silences gene expression mainly via the polycomb repressive complex 1.1 (PRC1.1). BCOR genomic alterations are found in a variety of different tumors and recently central nervous system (CNS) tumors with BCOR internal tandem duplication (ITD) were classified as a distinct molecular subgroup. We established and characterized two cell models derived from BCOR altered CNS tumor patients. One model is characterized by a frameshift mutation in the BCOR gene resulting in the expression of a truncated protein lacking the C-terminal PUFD domain required for correct assembly of the PRC1.1. Additionally, this model harbors a translocation of the BCOR homologue BCORL1. The second model has a characteristic internal tandem duplication (ITD) within the BCOR gene. To study the effects of mutated BCOR/BCORL1 on gene expression, we performed siRNA mediated knockdown of altered BCOR/BCORL1 transcripts in both models and analyzed transcriptional changes by mRNA expression array. Differentially expressed genes in BCOR/BCORL1 knockdown versus wild type conditions were enriched for signaling pathways involved in cell cycle progression, cell growth, DNA replication and cancer. This suggests that the alterations in BCOR/BCORL1 might have pro-oncogenic effects and thereby contribute to the aggressive phenotype of this disease. Especially in the BCOR ITD model knockdown of BCOR led to transcriptional downregulation of genes associated with the development of brain tumors such as FGF18, PDGFA and PDGFRA. Our results indicate that specific BCOR/BCORL1 alterations might impair its endogenous function as transcriptional repressor and deregulate the expression of multiple PRC1.1 target genes. An in depth characterization of epigenetic and transcriptional changes in BCOR/BCORL1 altered CNS tumors could lead to the identification of critical downstream effectors and ultimately reveal new therapeutic vulnerabilities. Oxford University Press 2022-06-03 /pmc/articles/PMC9164644/ http://dx.doi.org/10.1093/neuonc/noac079.189 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | ETMR and other Embryonal Tumors Piontek, Martin Kirchhofer, Dominik Gabler, Lisa Lötsch-Gojo, Daniela Pirker, Christine Schmitt-Hoffner, Felix Jaunecker, Carola N Kool, Marcel Berger, Walter Gojo, Johannes ETMR-11. Transcriptional changes upon knockdown of alteredBCOR/BCORL1 transcripts in preclinical models of CNS embryonal tumors with BCOR-related alterations |
title | ETMR-11. Transcriptional changes upon knockdown of alteredBCOR/BCORL1 transcripts in preclinical models of CNS embryonal tumors with BCOR-related alterations |
title_full | ETMR-11. Transcriptional changes upon knockdown of alteredBCOR/BCORL1 transcripts in preclinical models of CNS embryonal tumors with BCOR-related alterations |
title_fullStr | ETMR-11. Transcriptional changes upon knockdown of alteredBCOR/BCORL1 transcripts in preclinical models of CNS embryonal tumors with BCOR-related alterations |
title_full_unstemmed | ETMR-11. Transcriptional changes upon knockdown of alteredBCOR/BCORL1 transcripts in preclinical models of CNS embryonal tumors with BCOR-related alterations |
title_short | ETMR-11. Transcriptional changes upon knockdown of alteredBCOR/BCORL1 transcripts in preclinical models of CNS embryonal tumors with BCOR-related alterations |
title_sort | etmr-11. transcriptional changes upon knockdown of alteredbcor/bcorl1 transcripts in preclinical models of cns embryonal tumors with bcor-related alterations |
topic | ETMR and other Embryonal Tumors |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164644/ http://dx.doi.org/10.1093/neuonc/noac079.189 |
work_keys_str_mv | AT piontekmartin etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations AT kirchhoferdominik etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations AT gablerlisa etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations AT lotschgojodaniela etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations AT pirkerchristine etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations AT schmitthoffnerfelix etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations AT jauneckercarolan etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations AT koolmarcel etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations AT bergerwalter etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations AT gojojohannes etmr11transcriptionalchangesuponknockdownofalteredbcorbcorl1transcriptsinpreclinicalmodelsofcnsembryonaltumorswithbcorrelatedalterations |