Cargando…

GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton

Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca(2+) homeostasis. Here, we identify the u...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolf, Christina, Pouya, Alireza, Bitar, Sara, Pfeiffer, Annika, Bueno, Diones, Rojas-Charry, Liliana, Arndt, Sabine, Gomez-Zepeda, David, Tenzer, Stefan, Bello, Federica Dal, Vianello, Caterina, Ritz, Sandra, Schwirz, Jonas, Dobrindt, Kristina, Peitz, Michael, Hanschmann, Eva-Maria, Mencke, Pauline, Boussaad, Ibrahim, Silies, Marion, Brüstle, Oliver, Giacomello, Marta, Krüger, Rejko, Methner, Axel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166793/
https://www.ncbi.nlm.nih.gov/pubmed/35662277
http://dx.doi.org/10.1038/s42003-022-03487-6
_version_ 1784720685486047232
author Wolf, Christina
Pouya, Alireza
Bitar, Sara
Pfeiffer, Annika
Bueno, Diones
Rojas-Charry, Liliana
Arndt, Sabine
Gomez-Zepeda, David
Tenzer, Stefan
Bello, Federica Dal
Vianello, Caterina
Ritz, Sandra
Schwirz, Jonas
Dobrindt, Kristina
Peitz, Michael
Hanschmann, Eva-Maria
Mencke, Pauline
Boussaad, Ibrahim
Silies, Marion
Brüstle, Oliver
Giacomello, Marta
Krüger, Rejko
Methner, Axel
author_facet Wolf, Christina
Pouya, Alireza
Bitar, Sara
Pfeiffer, Annika
Bueno, Diones
Rojas-Charry, Liliana
Arndt, Sabine
Gomez-Zepeda, David
Tenzer, Stefan
Bello, Federica Dal
Vianello, Caterina
Ritz, Sandra
Schwirz, Jonas
Dobrindt, Kristina
Peitz, Michael
Hanschmann, Eva-Maria
Mencke, Pauline
Boussaad, Ibrahim
Silies, Marion
Brüstle, Oliver
Giacomello, Marta
Krüger, Rejko
Methner, Axel
author_sort Wolf, Christina
collection PubMed
description Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca(2+) homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca(2+) levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology.
format Online
Article
Text
id pubmed-9166793
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91667932022-06-05 GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton Wolf, Christina Pouya, Alireza Bitar, Sara Pfeiffer, Annika Bueno, Diones Rojas-Charry, Liliana Arndt, Sabine Gomez-Zepeda, David Tenzer, Stefan Bello, Federica Dal Vianello, Caterina Ritz, Sandra Schwirz, Jonas Dobrindt, Kristina Peitz, Michael Hanschmann, Eva-Maria Mencke, Pauline Boussaad, Ibrahim Silies, Marion Brüstle, Oliver Giacomello, Marta Krüger, Rejko Methner, Axel Commun Biol Article Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca(2+) homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca(2+) levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology. Nature Publishing Group UK 2022-06-03 /pmc/articles/PMC9166793/ /pubmed/35662277 http://dx.doi.org/10.1038/s42003-022-03487-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wolf, Christina
Pouya, Alireza
Bitar, Sara
Pfeiffer, Annika
Bueno, Diones
Rojas-Charry, Liliana
Arndt, Sabine
Gomez-Zepeda, David
Tenzer, Stefan
Bello, Federica Dal
Vianello, Caterina
Ritz, Sandra
Schwirz, Jonas
Dobrindt, Kristina
Peitz, Michael
Hanschmann, Eva-Maria
Mencke, Pauline
Boussaad, Ibrahim
Silies, Marion
Brüstle, Oliver
Giacomello, Marta
Krüger, Rejko
Methner, Axel
GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton
title GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton
title_full GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton
title_fullStr GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton
title_full_unstemmed GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton
title_short GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton
title_sort gdap1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166793/
https://www.ncbi.nlm.nih.gov/pubmed/35662277
http://dx.doi.org/10.1038/s42003-022-03487-6
work_keys_str_mv AT wolfchristina gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT pouyaalireza gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT bitarsara gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT pfeifferannika gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT buenodiones gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT rojascharryliliana gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT arndtsabine gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT gomezzepedadavid gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT tenzerstefan gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT bellofedericadal gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT vianellocaterina gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT ritzsandra gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT schwirzjonas gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT dobrindtkristina gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT peitzmichael gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT hanschmannevamaria gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT menckepauline gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT boussaadibrahim gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT siliesmarion gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT brustleoliver gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT giacomellomarta gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT krugerrejko gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton
AT methneraxel gdap1lossoffunctioninhibitsthemitochondrialpyruvatedehydrogenasecomplexbyalteringtheactincytoskeleton