Cargando…
Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling
Rationale: Angiogenesis is a fundamental process of tumorigenesis, growth, invasion and metastatic spread. Extracellular vesicles, especially exosomes, released by primary tumors promote angiogenesis and cancer progression. However, the mechanism underlying the pro-angiogenic potency of cancer cell-...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169374/ https://www.ncbi.nlm.nih.gov/pubmed/35673569 http://dx.doi.org/10.7150/thno.72404 |
_version_ | 1784721194091544576 |
---|---|
author | Han, Baoai Zhang, He Tian, Ruinan Liu, Hui Wang, Zhaosong Wang, Zhiyong Tian, Jianfei Cui, Yanfen Ren, Sixin Zuo, Xiaoyan Tian, Ran Niu, Ruifang Zhang, Fei |
author_facet | Han, Baoai Zhang, He Tian, Ruinan Liu, Hui Wang, Zhaosong Wang, Zhiyong Tian, Jianfei Cui, Yanfen Ren, Sixin Zuo, Xiaoyan Tian, Ran Niu, Ruifang Zhang, Fei |
author_sort | Han, Baoai |
collection | PubMed |
description | Rationale: Angiogenesis is a fundamental process of tumorigenesis, growth, invasion and metastatic spread. Extracellular vesicles, especially exosomes, released by primary tumors promote angiogenesis and cancer progression. However, the mechanism underlying the pro-angiogenic potency of cancer cell-derived exosomes remains poorly understood. Methods: Exosomes were isolated from breast cancer cells with high metastatic potential (HM) and low metastatic potential (LM). The pro-angiogenic effects of these exosomes were evaluated by in vitro tube formation assays, wound healing assays, rat arterial ring budding assays and in vivo Matrigel plug assays. Subsequently, RNA sequencing, shRNA-mediated gene knockdown, overexpression of different EPHA2 mutants, and small-molecule inhibitors were used to analyze the angiogenesis-promoting effect of exosomal EPHA2 and its potential downstream mechanism. Finally, xenograft tumor models were established using tumor cells expressing different levels of EPHA2 to mimic the secretion of exosomes by tumor cells in vivo, and the metastasis of cancer cells were monitored using the IVIS Spectrum imaging system and Computed Tomography. Results: Herein, we demonstrated that exosomes produced by HM breast cancer cells can promote angiogenesis and metastasis. EPHA2 was rich in HM-derived exosomes and conferred the pro-angiogenic effect. Exosomal EPHA2 can be transferred from HM breast cancer cells to endothelial cells. Moreover, it can stimulate the migration and tube-forming abilities of endothelial cells in vitro and promote angiogenesis and tumor metastasis in vivo. Mechanistically, exosomal EPHA2 activates the AMPK signaling via the ligand Ephrin A1-dependent canonical forward signaling pathway. Moreover, inhibition of the AMPK signaling impairs exosomal EPHA2-mediated pro-angiogenic effects. Conclusion: Our findings identify a novel mechanism of exosomal EPHA2-mediated intercellular communication from breast cancer cells to endothelial cells in the tumor microenvironment to provoke angiogenesis and metastasis. Targeting the exosomal EPHA2-AMPK signaling may serve as a potential strategy for breast cancer therapy. |
format | Online Article Text |
id | pubmed-9169374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-91693742022-06-06 Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling Han, Baoai Zhang, He Tian, Ruinan Liu, Hui Wang, Zhaosong Wang, Zhiyong Tian, Jianfei Cui, Yanfen Ren, Sixin Zuo, Xiaoyan Tian, Ran Niu, Ruifang Zhang, Fei Theranostics Research Paper Rationale: Angiogenesis is a fundamental process of tumorigenesis, growth, invasion and metastatic spread. Extracellular vesicles, especially exosomes, released by primary tumors promote angiogenesis and cancer progression. However, the mechanism underlying the pro-angiogenic potency of cancer cell-derived exosomes remains poorly understood. Methods: Exosomes were isolated from breast cancer cells with high metastatic potential (HM) and low metastatic potential (LM). The pro-angiogenic effects of these exosomes were evaluated by in vitro tube formation assays, wound healing assays, rat arterial ring budding assays and in vivo Matrigel plug assays. Subsequently, RNA sequencing, shRNA-mediated gene knockdown, overexpression of different EPHA2 mutants, and small-molecule inhibitors were used to analyze the angiogenesis-promoting effect of exosomal EPHA2 and its potential downstream mechanism. Finally, xenograft tumor models were established using tumor cells expressing different levels of EPHA2 to mimic the secretion of exosomes by tumor cells in vivo, and the metastasis of cancer cells were monitored using the IVIS Spectrum imaging system and Computed Tomography. Results: Herein, we demonstrated that exosomes produced by HM breast cancer cells can promote angiogenesis and metastasis. EPHA2 was rich in HM-derived exosomes and conferred the pro-angiogenic effect. Exosomal EPHA2 can be transferred from HM breast cancer cells to endothelial cells. Moreover, it can stimulate the migration and tube-forming abilities of endothelial cells in vitro and promote angiogenesis and tumor metastasis in vivo. Mechanistically, exosomal EPHA2 activates the AMPK signaling via the ligand Ephrin A1-dependent canonical forward signaling pathway. Moreover, inhibition of the AMPK signaling impairs exosomal EPHA2-mediated pro-angiogenic effects. Conclusion: Our findings identify a novel mechanism of exosomal EPHA2-mediated intercellular communication from breast cancer cells to endothelial cells in the tumor microenvironment to provoke angiogenesis and metastasis. Targeting the exosomal EPHA2-AMPK signaling may serve as a potential strategy for breast cancer therapy. Ivyspring International Publisher 2022-05-13 /pmc/articles/PMC9169374/ /pubmed/35673569 http://dx.doi.org/10.7150/thno.72404 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Han, Baoai Zhang, He Tian, Ruinan Liu, Hui Wang, Zhaosong Wang, Zhiyong Tian, Jianfei Cui, Yanfen Ren, Sixin Zuo, Xiaoyan Tian, Ran Niu, Ruifang Zhang, Fei Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling |
title | Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling |
title_full | Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling |
title_fullStr | Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling |
title_full_unstemmed | Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling |
title_short | Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling |
title_sort | exosomal epha2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the ampk signaling pathway through ephrin a1-epha2 forward signaling |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169374/ https://www.ncbi.nlm.nih.gov/pubmed/35673569 http://dx.doi.org/10.7150/thno.72404 |
work_keys_str_mv | AT hanbaoai exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT zhanghe exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT tianruinan exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT liuhui exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT wangzhaosong exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT wangzhiyong exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT tianjianfei exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT cuiyanfen exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT rensixin exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT zuoxiaoyan exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT tianran exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT niuruifang exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling AT zhangfei exosomalepha2derivedfromhighlymetastaticbreastcancercellspromotesangiogenesisbyactivatingtheampksignalingpathwaythroughephrina1epha2forwardsignaling |