Cargando…
Detection of increased pyruvate dehydrogenase flux in the human heart during adenosine stress test using hyperpolarized [1-(13)C]pyruvate cardiovascular magnetic resonance imaging
BACKGROUND: Hyperpolarized (HP) [1-(13)C]pyruvate cardiovascular magnetic resonance (CMR) imaging can visualize the uptake and intracellular conversion of [1-(13)C]pyruvate to either [1-(13)C]lactate or (13)C-bicarbonate depending on the prevailing metabolic state. The aim of the present study was t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169396/ https://www.ncbi.nlm.nih.gov/pubmed/35658896 http://dx.doi.org/10.1186/s12968-022-00860-6 |
Sumario: | BACKGROUND: Hyperpolarized (HP) [1-(13)C]pyruvate cardiovascular magnetic resonance (CMR) imaging can visualize the uptake and intracellular conversion of [1-(13)C]pyruvate to either [1-(13)C]lactate or (13)C-bicarbonate depending on the prevailing metabolic state. The aim of the present study was to combine an adenosine stress test with HP [1-(13)C]pyruvate CMR to detect cardiac metabolism in the healthy human heart at rest and during moderate stress. METHODS: A prospective descriptive study was performed between October 2019 and August 2020. Healthy human subjects underwent cine CMR and HP [1-(13)C]pyruvate CMR at rest and during adenosine stress. HP [1-(13)C]pyruvate CMR images were acquired at the mid-left-ventricle (LV) level. Semi-quantitative assessment of first-pass myocardial [1-(13)C]pyruvate perfusion and metabolism were assessed. Paired t-tests were used to compare mean values at rest and during stress. RESULTS: Six healthy subjects (two female), age 29 ± 7 years were studied and no adverse reactions occurred. Myocardial [1-(13)C]pyruvate perfusion was significantly increased during stress with a reduction in time-to-peak from 6.2 ± 2.8 to 2.7 ± 1.3 s, p = 0.02. This higher perfusion was accompanied by an overall increased myocardial uptake and metabolism. The conversion rate constant (k(PL)) for lactate increased from 11 ± 9 *10(–3) to 20 ± 10 * 10(–3) s(−1), p = 0.04. The pyruvate oxidation rate (k(PB)) increased from 4 ± 4 *10(–3) to 12 ± 7 *10(–3) s(−1), p = 0.008. This increase in carbohydrate metabolism was positively correlated with heart rate (R(2) = 0.44, p = 0.02). CONCLUSIONS: Adenosine stress testing combined with HP [1-(13)C]pyruvate CMR is feasible and well-tolerated in healthy subjects. We observed an increased pyruvate oxidation during cardiac stress. The present study is an important step in the translation of HP [1-(13)C]pyruvate CMR into clinical cardiac imaging. Trial registration EUDRACT, 2018-003533-15. Registered 4th of December 2018, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-003533-15 |
---|