Cargando…

Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy

Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug–drug synergies, testing new drug combinations in relevant host environments remains ard...

Descripción completa

Detalles Bibliográficos
Autores principales: Koh, Eun-Ik, Oluoch, Peter O., Ruecker, Nadine, Proulx, Megan K., Soni, Vijay, Murphy, Kenan C., Papavinasasundaram, Kadamba, Reames, Charlotte J., Trujillo, Carolina, Zaveri, Anisha, Zimmerman, Matthew D., Aslebagh, Roshanak, Baker, Richard E., Shaffer, Scott A., Guinn, Kristine M., Fitzgerald, Michael, Dartois, Véronique, Ehrt, Sabine, Hung, Deborah T., Ioerger, Thomas R., Rubin, Eric J., Rhee, Kyu Y., Schnappinger, Dirk, Sassetti, Christopher M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169745/
https://www.ncbi.nlm.nih.gov/pubmed/35380903
http://dx.doi.org/10.1073/pnas.2201632119
_version_ 1784721263762079744
author Koh, Eun-Ik
Oluoch, Peter O.
Ruecker, Nadine
Proulx, Megan K.
Soni, Vijay
Murphy, Kenan C.
Papavinasasundaram, Kadamba
Reames, Charlotte J.
Trujillo, Carolina
Zaveri, Anisha
Zimmerman, Matthew D.
Aslebagh, Roshanak
Baker, Richard E.
Shaffer, Scott A.
Guinn, Kristine M.
Fitzgerald, Michael
Dartois, Véronique
Ehrt, Sabine
Hung, Deborah T.
Ioerger, Thomas R.
Rubin, Eric J.
Rhee, Kyu Y.
Schnappinger, Dirk
Sassetti, Christopher M.
author_facet Koh, Eun-Ik
Oluoch, Peter O.
Ruecker, Nadine
Proulx, Megan K.
Soni, Vijay
Murphy, Kenan C.
Papavinasasundaram, Kadamba
Reames, Charlotte J.
Trujillo, Carolina
Zaveri, Anisha
Zimmerman, Matthew D.
Aslebagh, Roshanak
Baker, Richard E.
Shaffer, Scott A.
Guinn, Kristine M.
Fitzgerald, Michael
Dartois, Véronique
Ehrt, Sabine
Hung, Deborah T.
Ioerger, Thomas R.
Rubin, Eric J.
Rhee, Kyu Y.
Schnappinger, Dirk
Sassetti, Christopher M.
author_sort Koh, Eun-Ik
collection PubMed
description Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug–drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical–genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo–relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical–genetic–environmental interactions that can be used to optimize drug–drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.
format Online
Article
Text
id pubmed-9169745
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-91697452022-10-05 Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy Koh, Eun-Ik Oluoch, Peter O. Ruecker, Nadine Proulx, Megan K. Soni, Vijay Murphy, Kenan C. Papavinasasundaram, Kadamba Reames, Charlotte J. Trujillo, Carolina Zaveri, Anisha Zimmerman, Matthew D. Aslebagh, Roshanak Baker, Richard E. Shaffer, Scott A. Guinn, Kristine M. Fitzgerald, Michael Dartois, Véronique Ehrt, Sabine Hung, Deborah T. Ioerger, Thomas R. Rubin, Eric J. Rhee, Kyu Y. Schnappinger, Dirk Sassetti, Christopher M. Proc Natl Acad Sci U S A Biological Sciences Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug–drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical–genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo–relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical–genetic–environmental interactions that can be used to optimize drug–drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy. National Academy of Sciences 2022-04-05 2022-04-12 /pmc/articles/PMC9169745/ /pubmed/35380903 http://dx.doi.org/10.1073/pnas.2201632119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Koh, Eun-Ik
Oluoch, Peter O.
Ruecker, Nadine
Proulx, Megan K.
Soni, Vijay
Murphy, Kenan C.
Papavinasasundaram, Kadamba
Reames, Charlotte J.
Trujillo, Carolina
Zaveri, Anisha
Zimmerman, Matthew D.
Aslebagh, Roshanak
Baker, Richard E.
Shaffer, Scott A.
Guinn, Kristine M.
Fitzgerald, Michael
Dartois, Véronique
Ehrt, Sabine
Hung, Deborah T.
Ioerger, Thomas R.
Rubin, Eric J.
Rhee, Kyu Y.
Schnappinger, Dirk
Sassetti, Christopher M.
Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy
title Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy
title_full Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy
title_fullStr Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy
title_full_unstemmed Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy
title_short Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy
title_sort chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169745/
https://www.ncbi.nlm.nih.gov/pubmed/35380903
http://dx.doi.org/10.1073/pnas.2201632119
work_keys_str_mv AT koheunik chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT oluochpetero chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT rueckernadine chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT proulxmegank chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT sonivijay chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT murphykenanc chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT papavinasasundaramkadamba chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT reamescharlottej chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT trujillocarolina chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT zaverianisha chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT zimmermanmatthewd chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT aslebaghroshanak chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT bakerricharde chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT shafferscotta chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT guinnkristinem chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT fitzgeraldmichael chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT dartoisveronique chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT ehrtsabine chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT hungdeboraht chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT ioergerthomasr chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT rubinericj chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT rheekyuy chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT schnappingerdirk chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy
AT sassettichristopherm chemicalgeneticinteractionmappinglinkscarbonmetabolismandcellwallstructuretotuberculosisdrugefficacy