Cargando…

SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells

OBJECTIVE: Mitochondrial “retrograde” signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Jackson, Joshua, Wischhof, Lena, Scifo, Enzo, Pellizzer, Anna, Wang, Yiru, Piazzesi, Antonia, Gentile, Debora, Siddig, Sana, Stork, Miriam, Hopkins, Chris E., Händler, Kristian, Weis, Joachim, Roos, Andreas, Schultze, Joachim L., Nicotera, Pierluigi, Ehninger, Dan, Bano, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170783/
https://www.ncbi.nlm.nih.gov/pubmed/35452878
http://dx.doi.org/10.1016/j.molmet.2022.101503
_version_ 1784721510851674112
author Jackson, Joshua
Wischhof, Lena
Scifo, Enzo
Pellizzer, Anna
Wang, Yiru
Piazzesi, Antonia
Gentile, Debora
Siddig, Sana
Stork, Miriam
Hopkins, Chris E.
Händler, Kristian
Weis, Joachim
Roos, Andreas
Schultze, Joachim L.
Nicotera, Pierluigi
Ehninger, Dan
Bano, Daniele
author_facet Jackson, Joshua
Wischhof, Lena
Scifo, Enzo
Pellizzer, Anna
Wang, Yiru
Piazzesi, Antonia
Gentile, Debora
Siddig, Sana
Stork, Miriam
Hopkins, Chris E.
Händler, Kristian
Weis, Joachim
Roos, Andreas
Schultze, Joachim L.
Nicotera, Pierluigi
Ehninger, Dan
Bano, Daniele
author_sort Jackson, Joshua
collection PubMed
description OBJECTIVE: Mitochondrial “retrograde” signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated. METHODS: We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues. RESULTS: We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system. CONCLUSIONS: Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells.
format Online
Article
Text
id pubmed-9170783
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-91707832022-06-08 SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells Jackson, Joshua Wischhof, Lena Scifo, Enzo Pellizzer, Anna Wang, Yiru Piazzesi, Antonia Gentile, Debora Siddig, Sana Stork, Miriam Hopkins, Chris E. Händler, Kristian Weis, Joachim Roos, Andreas Schultze, Joachim L. Nicotera, Pierluigi Ehninger, Dan Bano, Daniele Mol Metab Original Article OBJECTIVE: Mitochondrial “retrograde” signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated. METHODS: We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues. RESULTS: We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system. CONCLUSIONS: Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells. Elsevier 2022-04-19 /pmc/articles/PMC9170783/ /pubmed/35452878 http://dx.doi.org/10.1016/j.molmet.2022.101503 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Jackson, Joshua
Wischhof, Lena
Scifo, Enzo
Pellizzer, Anna
Wang, Yiru
Piazzesi, Antonia
Gentile, Debora
Siddig, Sana
Stork, Miriam
Hopkins, Chris E.
Händler, Kristian
Weis, Joachim
Roos, Andreas
Schultze, Joachim L.
Nicotera, Pierluigi
Ehninger, Dan
Bano, Daniele
SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells
title SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells
title_full SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells
title_fullStr SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells
title_full_unstemmed SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells
title_short SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells
title_sort sgpl1 stimulates vps39 recruitment to the mitochondria in micu1 deficient cells
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170783/
https://www.ncbi.nlm.nih.gov/pubmed/35452878
http://dx.doi.org/10.1016/j.molmet.2022.101503
work_keys_str_mv AT jacksonjoshua sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT wischhoflena sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT scifoenzo sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT pellizzeranna sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT wangyiru sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT piazzesiantonia sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT gentiledebora sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT siddigsana sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT storkmiriam sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT hopkinschrise sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT handlerkristian sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT weisjoachim sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT roosandreas sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT schultzejoachiml sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT nicoterapierluigi sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT ehningerdan sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells
AT banodaniele sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells