Cargando…
SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells
OBJECTIVE: Mitochondrial “retrograde” signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally cou...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170783/ https://www.ncbi.nlm.nih.gov/pubmed/35452878 http://dx.doi.org/10.1016/j.molmet.2022.101503 |
_version_ | 1784721510851674112 |
---|---|
author | Jackson, Joshua Wischhof, Lena Scifo, Enzo Pellizzer, Anna Wang, Yiru Piazzesi, Antonia Gentile, Debora Siddig, Sana Stork, Miriam Hopkins, Chris E. Händler, Kristian Weis, Joachim Roos, Andreas Schultze, Joachim L. Nicotera, Pierluigi Ehninger, Dan Bano, Daniele |
author_facet | Jackson, Joshua Wischhof, Lena Scifo, Enzo Pellizzer, Anna Wang, Yiru Piazzesi, Antonia Gentile, Debora Siddig, Sana Stork, Miriam Hopkins, Chris E. Händler, Kristian Weis, Joachim Roos, Andreas Schultze, Joachim L. Nicotera, Pierluigi Ehninger, Dan Bano, Daniele |
author_sort | Jackson, Joshua |
collection | PubMed |
description | OBJECTIVE: Mitochondrial “retrograde” signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated. METHODS: We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues. RESULTS: We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system. CONCLUSIONS: Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells. |
format | Online Article Text |
id | pubmed-9170783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-91707832022-06-08 SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells Jackson, Joshua Wischhof, Lena Scifo, Enzo Pellizzer, Anna Wang, Yiru Piazzesi, Antonia Gentile, Debora Siddig, Sana Stork, Miriam Hopkins, Chris E. Händler, Kristian Weis, Joachim Roos, Andreas Schultze, Joachim L. Nicotera, Pierluigi Ehninger, Dan Bano, Daniele Mol Metab Original Article OBJECTIVE: Mitochondrial “retrograde” signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated. METHODS: We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues. RESULTS: We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system. CONCLUSIONS: Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells. Elsevier 2022-04-19 /pmc/articles/PMC9170783/ /pubmed/35452878 http://dx.doi.org/10.1016/j.molmet.2022.101503 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Jackson, Joshua Wischhof, Lena Scifo, Enzo Pellizzer, Anna Wang, Yiru Piazzesi, Antonia Gentile, Debora Siddig, Sana Stork, Miriam Hopkins, Chris E. Händler, Kristian Weis, Joachim Roos, Andreas Schultze, Joachim L. Nicotera, Pierluigi Ehninger, Dan Bano, Daniele SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells |
title | SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells |
title_full | SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells |
title_fullStr | SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells |
title_full_unstemmed | SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells |
title_short | SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells |
title_sort | sgpl1 stimulates vps39 recruitment to the mitochondria in micu1 deficient cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170783/ https://www.ncbi.nlm.nih.gov/pubmed/35452878 http://dx.doi.org/10.1016/j.molmet.2022.101503 |
work_keys_str_mv | AT jacksonjoshua sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT wischhoflena sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT scifoenzo sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT pellizzeranna sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT wangyiru sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT piazzesiantonia sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT gentiledebora sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT siddigsana sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT storkmiriam sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT hopkinschrise sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT handlerkristian sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT weisjoachim sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT roosandreas sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT schultzejoachiml sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT nicoterapierluigi sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT ehningerdan sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells AT banodaniele sgpl1stimulatesvps39recruitmenttothemitochondriainmicu1deficientcells |