Cargando…
Collision-aware interactive simulation using graph neural networks
Deep simulations have gained widespread attention owing to their excellent acceleration performances. However, these methods cannot provide effective collision detection and response strategies. We propose a deep interactive physical simulation framework that can effectively address tool-object coll...
Autores principales: | Zhu, Xin, Qian, Yinling, Wang, Qiong, Feng, Ziliang, Heng, Pheng-Ann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170855/ https://www.ncbi.nlm.nih.gov/pubmed/35668216 http://dx.doi.org/10.1186/s42492-022-00113-4 |
Ejemplares similares
-
Channel-Unet: A Spatial Channel-Wise Convolutional Neural Network for Liver and Tumors Segmentation
por: Chen, Yilong, et al.
Publicado: (2019) -
Degree-Aware Graph Neural Network Quantization
por: Fan, Ziqin, et al.
Publicado: (2023) -
Hepatic vessel segmentation based on 3D swin-transformer with inductive biased multi-head self-attention
por: Wu, Mian, et al.
Publicado: (2023) -
A graph neural network framework based on preference-aware graph diffusion for recommendation
por: Shu, Tao, et al.
Publicado: (2022) -
Session Recommendation Model Based on Context-Aware and Gated Graph Neural Networks
por: Li, Dan, et al.
Publicado: (2021)