Cargando…
Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD–Driven AML
The protein tyrosine phosphatase SHP2 is crucial for oncogenic transformation of acute myeloid leukemia (AML) cells expressing mutated receptor tyrosine kinases. SHP2 is required for full RAS-ERK activation to promote cell proliferation and survival programs. Allosteric SHP2 inhibitors act by stabil...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177641/ https://www.ncbi.nlm.nih.gov/pubmed/35311954 http://dx.doi.org/10.1158/0008-5472.CAN-21-0548 |
_version_ | 1784722917118967808 |
---|---|
author | Pfeiffer, Anamarija Franciosa, Giulia Locard-Paulet, Marie Piga, Ilaria Reckzeh, Kristian Vemulapalli, Vidyasiri Blacklow, Stephen C. Theilgaard-Mönch, Kim Jensen, Lars J. Olsen, Jesper V. |
author_facet | Pfeiffer, Anamarija Franciosa, Giulia Locard-Paulet, Marie Piga, Ilaria Reckzeh, Kristian Vemulapalli, Vidyasiri Blacklow, Stephen C. Theilgaard-Mönch, Kim Jensen, Lars J. Olsen, Jesper V. |
author_sort | Pfeiffer, Anamarija |
collection | PubMed |
description | The protein tyrosine phosphatase SHP2 is crucial for oncogenic transformation of acute myeloid leukemia (AML) cells expressing mutated receptor tyrosine kinases. SHP2 is required for full RAS-ERK activation to promote cell proliferation and survival programs. Allosteric SHP2 inhibitors act by stabilizing SHP2 in its autoinhibited conformation and are currently being tested in clinical trials for tumors with overactivation of the RAS/ERK pathway, alone and in various drug combinations. In this study, we established cells with acquired resistance to the allosteric SHP2 inhibitor SHP099 from two FLT3-ITD (internal tandem duplication)-positive AML cell lines. Label-free and isobaric labeling quantitative mass spectrometry–based phosphoproteomics of these resistant models demonstrated that AML cells can restore phosphorylated ERK (pERK) in the presence of SHP099, thus developing adaptive resistance. Mechanistically, SHP2 inhibition induced tyrosine phosphorylation and feedback-driven activation of the FLT3 receptor, which in turn phosphorylated SHP2 on tyrosine 62. This phosphorylation stabilized SHP2 in its open conformation, preventing SHP099 binding and conferring resistance. Combinatorial inhibition of SHP2 and MEK or FLT3 prevented pERK rebound and resistant cell growth. The same mechanism was observed in a FLT3-mutated B-cell acute lymphoblastic leukemia cell line and in the inv(16)/Kit(D816Y) AML mouse model, but allosteric inhibition of Shp2 did not impair the clonogenic ability of normal bone marrow progenitors. Together, these results support the future use of SHP2 inhibitor combinations for clinical applications. SIGNIFICANCE: These findings suggest that combined inhibition of SHP2 and FLT3 effectively treat FLT3-ITD–positive AML, highlighting the need for development of more potent SHP2 inhibitors and combination therapies for clinical applications. |
format | Online Article Text |
id | pubmed-9177641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for Cancer Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-91776412022-12-06 Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD–Driven AML Pfeiffer, Anamarija Franciosa, Giulia Locard-Paulet, Marie Piga, Ilaria Reckzeh, Kristian Vemulapalli, Vidyasiri Blacklow, Stephen C. Theilgaard-Mönch, Kim Jensen, Lars J. Olsen, Jesper V. Cancer Res Molecular Cell Biology The protein tyrosine phosphatase SHP2 is crucial for oncogenic transformation of acute myeloid leukemia (AML) cells expressing mutated receptor tyrosine kinases. SHP2 is required for full RAS-ERK activation to promote cell proliferation and survival programs. Allosteric SHP2 inhibitors act by stabilizing SHP2 in its autoinhibited conformation and are currently being tested in clinical trials for tumors with overactivation of the RAS/ERK pathway, alone and in various drug combinations. In this study, we established cells with acquired resistance to the allosteric SHP2 inhibitor SHP099 from two FLT3-ITD (internal tandem duplication)-positive AML cell lines. Label-free and isobaric labeling quantitative mass spectrometry–based phosphoproteomics of these resistant models demonstrated that AML cells can restore phosphorylated ERK (pERK) in the presence of SHP099, thus developing adaptive resistance. Mechanistically, SHP2 inhibition induced tyrosine phosphorylation and feedback-driven activation of the FLT3 receptor, which in turn phosphorylated SHP2 on tyrosine 62. This phosphorylation stabilized SHP2 in its open conformation, preventing SHP099 binding and conferring resistance. Combinatorial inhibition of SHP2 and MEK or FLT3 prevented pERK rebound and resistant cell growth. The same mechanism was observed in a FLT3-mutated B-cell acute lymphoblastic leukemia cell line and in the inv(16)/Kit(D816Y) AML mouse model, but allosteric inhibition of Shp2 did not impair the clonogenic ability of normal bone marrow progenitors. Together, these results support the future use of SHP2 inhibitor combinations for clinical applications. SIGNIFICANCE: These findings suggest that combined inhibition of SHP2 and FLT3 effectively treat FLT3-ITD–positive AML, highlighting the need for development of more potent SHP2 inhibitors and combination therapies for clinical applications. American Association for Cancer Research 2022-06-06 2022-03-21 /pmc/articles/PMC9177641/ /pubmed/35311954 http://dx.doi.org/10.1158/0008-5472.CAN-21-0548 Text en ©2022 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. |
spellingShingle | Molecular Cell Biology Pfeiffer, Anamarija Franciosa, Giulia Locard-Paulet, Marie Piga, Ilaria Reckzeh, Kristian Vemulapalli, Vidyasiri Blacklow, Stephen C. Theilgaard-Mönch, Kim Jensen, Lars J. Olsen, Jesper V. Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD–Driven AML |
title | Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD–Driven AML |
title_full | Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD–Driven AML |
title_fullStr | Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD–Driven AML |
title_full_unstemmed | Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD–Driven AML |
title_short | Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD–Driven AML |
title_sort | phosphorylation of shp2 at tyr62 enables acquired resistance to shp2 allosteric inhibitors in flt3-itd–driven aml |
topic | Molecular Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177641/ https://www.ncbi.nlm.nih.gov/pubmed/35311954 http://dx.doi.org/10.1158/0008-5472.CAN-21-0548 |
work_keys_str_mv | AT pfeifferanamarija phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml AT franciosagiulia phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml AT locardpauletmarie phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml AT pigailaria phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml AT reckzehkristian phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml AT vemulapallividyasiri phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml AT blacklowstephenc phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml AT theilgaardmonchkim phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml AT jensenlarsj phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml AT olsenjesperv phosphorylationofshp2attyr62enablesacquiredresistancetoshp2allostericinhibitorsinflt3itddrivenaml |