Cargando…
Complement C3 deficiency alleviates alkylation-induced retinal degeneration in mice
BACKGROUND: It has been found that the extensive use of anticancer drugs containing DNA-alkylating agents not only target cancer cells but also cause retinal inflammation through toxic intermediates. Complement C3 (C3) is a core component of the complement activation pathway, and dysregulation of th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178834/ https://www.ncbi.nlm.nih.gov/pubmed/35676725 http://dx.doi.org/10.1186/s40662-022-00292-4 |
Sumario: | BACKGROUND: It has been found that the extensive use of anticancer drugs containing DNA-alkylating agents not only target cancer cells but also cause retinal inflammation through toxic intermediates. Complement C3 (C3) is a core component of the complement activation pathway, and dysregulation of the complement pathway is involved in several retinal degenerative diseases. However, whether C3 plays a critical role in alkylation-induced retinal degeneration is unclear. METHODS: Following treatment with the alkylating agent methyl methane sulfonate (MMS), the C3 mRNA and protein level was measured, DNA damage and photoreceptor cell death were assessed in both wild-type (WT) C57BL/6J and C3 knockout (KO) mice. RESULTS: We determined that complement pathway is activated following MMS treatment, and C3 knockout (KO) increased the rate of photoreceptor cell survival and preserved visual function. The mRNA levels of nuclear erythroid-related factor 2 (Nrf2) and related genes were higher after MMS application in C3 KO mice. CONCLUSION: In summary, our study found that C3 KO promotes photoreceptor cell survival and activates the Nrf2 signaling pathway in the context of alkylation-induced retinal degeneration. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40662-022-00292-4. |
---|