Cargando…
An investigation of penalization and data augmentation to improve convergence of generalized estimating equations for clustered binary outcomes
BACKGROUND: In binary logistic regression data are ‘separable’ if there exists a linear combination of explanatory variables which perfectly predicts the observed outcome, leading to non-existence of some of the maximum likelihood coefficient estimates. A popular solution to obtain finite estimates...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178839/ https://www.ncbi.nlm.nih.gov/pubmed/35681120 http://dx.doi.org/10.1186/s12874-022-01641-6 |