Cargando…
An investigation of penalization and data augmentation to improve convergence of generalized estimating equations for clustered binary outcomes
BACKGROUND: In binary logistic regression data are ‘separable’ if there exists a linear combination of explanatory variables which perfectly predicts the observed outcome, leading to non-existence of some of the maximum likelihood coefficient estimates. A popular solution to obtain finite estimates...
Autores principales: | Geroldinger, Angelika, Blagus, Rok, Ogden, Helen, Heinze, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178839/ https://www.ncbi.nlm.nih.gov/pubmed/35681120 http://dx.doi.org/10.1186/s12874-022-01641-6 |
Ejemplares similares
-
To tune or not to tune, a case study of ridge logistic regression in small or sparse datasets
por: Šinkovec, Hana, et al.
Publicado: (2021) -
Leave-one-out cross-validation, penalization, and differential bias of some prediction model performance measures—a simulation study
por: Geroldinger, Angelika, et al.
Publicado: (2023) -
Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
por: Joshi, Ashwini, et al.
Publicado: (2021) -
Bring More Data!—A Good Advice? Removing Separation in Logistic Regression by Increasing Sample Size
por: Šinkovec, Hana, et al.
Publicado: (2019) -
Convergence Rates for Empirical Estimation of Binary Classification Bounds
por: Sekeh, Salimeh Yasaei, et al.
Publicado: (2019)