Cargando…

Effect of Fibril Entanglement on Pickering Emulsions Stabilized by Whey Protein Fibrils for Nobiletin Delivery

The aim of the study was to investigate the effects of whey protein isolate (WPI) fibrils entanglement on the stability and loading capacity of WPI fibrils-stabilized Pickering emulsion. The results of rheology and small-angle X-ray scattering (SAXS) showed the overlap concentration (C*) of WPI fibr...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Fangcheng, Chen, Chunling, Wang, Xinlan, Huang, Wenjing, Jin, Weiping, Huang, Qingrong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180220/
https://www.ncbi.nlm.nih.gov/pubmed/35681376
http://dx.doi.org/10.3390/foods11111626
Descripción
Sumario:The aim of the study was to investigate the effects of whey protein isolate (WPI) fibrils entanglement on the stability and loading capacity of WPI fibrils-stabilized Pickering emulsion. The results of rheology and small-angle X-ray scattering (SAXS) showed the overlap concentration (C*) of WPI fibrils was around 0.5 wt.%. When the concentration was higher than C*, the fibrils became compact and entangled in solution due to a small cross-sectional radius of gyration value (1.18 nm). The interfacial behavior was evaluated by interfacial adsorption and confocal laser scanning microscopy (CLSM). As the fibril concentration increased from 0.1 wt.% to 1.25 wt.%, faster adsorption kinetics (from 0.13 to 0.21) and lower interfacial tension (from 11.85 mN/m to 10.34 mN/m) were achieved. CLSM results showed that WPI fibrils can effectively absorb on the surface of oil droplets. Finally, the microstructure and in vitro lipolysis were used to evaluate the effect of fibrils entanglement on the stability of emulsion and bioaccessibility of nobiletin. At C* concentration, WPI fibrils-stabilized Pickering emulsions exhibited excellent long-term stability and were also stable at various pHs (2.0–7.0) and ionic strengths (0–200 mM). WPI fibrils-stabilized Pickering emulsions after loading nobiletin remained stable, and in vitro digestion showed that these Pickering emulsions could significantly improve the extent of lipolysis (from 36% to 49%) and nobiletin bioaccessibility (21.9% to 62.5%). This study could provide new insight into the fabrication of food-grade Pickering emulsion with good nutraceutical protection.