Cargando…
Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice
Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m(4)C839 residue...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181494/ https://www.ncbi.nlm.nih.gov/pubmed/35682734 http://dx.doi.org/10.3390/ijms23116056 |
_version_ | 1784723788341968896 |
---|---|
author | Averina, Olga A. Laptev, Ivan G. Emelianova, Mariia A. Permyakov, Oleg A. Mariasina, Sofia S. Nikiforova, Alyona I. Manskikh, Vasily N. Grigorieva, Olga O. Bolikhova, Anastasia K. Kalabin, Gennady A. Dontsova, Olga A. Sergiev, Petr V. |
author_facet | Averina, Olga A. Laptev, Ivan G. Emelianova, Mariia A. Permyakov, Oleg A. Mariasina, Sofia S. Nikiforova, Alyona I. Manskikh, Vasily N. Grigorieva, Olga O. Bolikhova, Anastasia K. Kalabin, Gennady A. Dontsova, Olga A. Sergiev, Petr V. |
author_sort | Averina, Olga A. |
collection | PubMed |
description | Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m(4)C839 residue (human numbering). Homozygous Mettl15(−/−) mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15(−/−) mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15(−/−) mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15(−/−) knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15(−/−) knockout mice a suitable model for mild mitochondriopathies. |
format | Online Article Text |
id | pubmed-9181494 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91814942022-06-10 Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice Averina, Olga A. Laptev, Ivan G. Emelianova, Mariia A. Permyakov, Oleg A. Mariasina, Sofia S. Nikiforova, Alyona I. Manskikh, Vasily N. Grigorieva, Olga O. Bolikhova, Anastasia K. Kalabin, Gennady A. Dontsova, Olga A. Sergiev, Petr V. Int J Mol Sci Article Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m(4)C839 residue (human numbering). Homozygous Mettl15(−/−) mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15(−/−) mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15(−/−) mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15(−/−) knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15(−/−) knockout mice a suitable model for mild mitochondriopathies. MDPI 2022-05-27 /pmc/articles/PMC9181494/ /pubmed/35682734 http://dx.doi.org/10.3390/ijms23116056 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Averina, Olga A. Laptev, Ivan G. Emelianova, Mariia A. Permyakov, Oleg A. Mariasina, Sofia S. Nikiforova, Alyona I. Manskikh, Vasily N. Grigorieva, Olga O. Bolikhova, Anastasia K. Kalabin, Gennady A. Dontsova, Olga A. Sergiev, Petr V. Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice |
title | Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice |
title_full | Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice |
title_fullStr | Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice |
title_full_unstemmed | Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice |
title_short | Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice |
title_sort | mitochondrial rrna methylation by mettl15 contributes to the exercise and learning capability in mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181494/ https://www.ncbi.nlm.nih.gov/pubmed/35682734 http://dx.doi.org/10.3390/ijms23116056 |
work_keys_str_mv | AT averinaolgaa mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT laptevivang mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT emelianovamariiaa mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT permyakovolega mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT mariasinasofias mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT nikiforovaalyonai mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT manskikhvasilyn mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT grigorievaolgao mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT bolikhovaanastasiak mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT kalabingennadya mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT dontsovaolgaa mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice AT sergievpetrv mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice |