Cargando…

Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice

Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m(4)C839 residue...

Descripción completa

Detalles Bibliográficos
Autores principales: Averina, Olga A., Laptev, Ivan G., Emelianova, Mariia A., Permyakov, Oleg A., Mariasina, Sofia S., Nikiforova, Alyona I., Manskikh, Vasily N., Grigorieva, Olga O., Bolikhova, Anastasia K., Kalabin, Gennady A., Dontsova, Olga A., Sergiev, Petr V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181494/
https://www.ncbi.nlm.nih.gov/pubmed/35682734
http://dx.doi.org/10.3390/ijms23116056
_version_ 1784723788341968896
author Averina, Olga A.
Laptev, Ivan G.
Emelianova, Mariia A.
Permyakov, Oleg A.
Mariasina, Sofia S.
Nikiforova, Alyona I.
Manskikh, Vasily N.
Grigorieva, Olga O.
Bolikhova, Anastasia K.
Kalabin, Gennady A.
Dontsova, Olga A.
Sergiev, Petr V.
author_facet Averina, Olga A.
Laptev, Ivan G.
Emelianova, Mariia A.
Permyakov, Oleg A.
Mariasina, Sofia S.
Nikiforova, Alyona I.
Manskikh, Vasily N.
Grigorieva, Olga O.
Bolikhova, Anastasia K.
Kalabin, Gennady A.
Dontsova, Olga A.
Sergiev, Petr V.
author_sort Averina, Olga A.
collection PubMed
description Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m(4)C839 residue (human numbering). Homozygous Mettl15(−/−) mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15(−/−) mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15(−/−) mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15(−/−) knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15(−/−) knockout mice a suitable model for mild mitochondriopathies.
format Online
Article
Text
id pubmed-9181494
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91814942022-06-10 Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice Averina, Olga A. Laptev, Ivan G. Emelianova, Mariia A. Permyakov, Oleg A. Mariasina, Sofia S. Nikiforova, Alyona I. Manskikh, Vasily N. Grigorieva, Olga O. Bolikhova, Anastasia K. Kalabin, Gennady A. Dontsova, Olga A. Sergiev, Petr V. Int J Mol Sci Article Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m(4)C839 residue (human numbering). Homozygous Mettl15(−/−) mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15(−/−) mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15(−/−) mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15(−/−) knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15(−/−) knockout mice a suitable model for mild mitochondriopathies. MDPI 2022-05-27 /pmc/articles/PMC9181494/ /pubmed/35682734 http://dx.doi.org/10.3390/ijms23116056 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Averina, Olga A.
Laptev, Ivan G.
Emelianova, Mariia A.
Permyakov, Oleg A.
Mariasina, Sofia S.
Nikiforova, Alyona I.
Manskikh, Vasily N.
Grigorieva, Olga O.
Bolikhova, Anastasia K.
Kalabin, Gennady A.
Dontsova, Olga A.
Sergiev, Petr V.
Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice
title Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice
title_full Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice
title_fullStr Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice
title_full_unstemmed Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice
title_short Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice
title_sort mitochondrial rrna methylation by mettl15 contributes to the exercise and learning capability in mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181494/
https://www.ncbi.nlm.nih.gov/pubmed/35682734
http://dx.doi.org/10.3390/ijms23116056
work_keys_str_mv AT averinaolgaa mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT laptevivang mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT emelianovamariiaa mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT permyakovolega mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT mariasinasofias mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT nikiforovaalyonai mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT manskikhvasilyn mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT grigorievaolgao mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT bolikhovaanastasiak mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT kalabingennadya mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT dontsovaolgaa mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice
AT sergievpetrv mitochondrialrrnamethylationbymettl15contributestotheexerciseandlearningcapabilityinmice