Cargando…
Mobile Robot Localization and Mapping Algorithm Based on the Fusion of Image and Laser Point Cloud
Given the lack of scale information of the image features detected by the visual SLAM (simultaneous localization and mapping) algorithm, the accumulation of many features lacking depth information will cause scale blur, which will lead to degradation and tracking failure. In this paper, we introduce...
Autores principales: | Dai, Jun, Li, Dongfang, Li, Yanqin, Zhao, Junwei, Li, Wenbo, Liu, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185257/ https://www.ncbi.nlm.nih.gov/pubmed/35684735 http://dx.doi.org/10.3390/s22114114 |
Ejemplares similares
-
A review of point cloud registration algorithms for mobile robotics
por: Pomerleau, François, et al.
Publicado: (2015) -
Integrate Point-Cloud Segmentation with 3D LiDAR Scan-Matching for Mobile Robot Localization and Mapping
por: Li, Xuyou, et al.
Publicado: (2019) -
Parameter Reduction and Optimisation for Point Cloud and Occupancy Mapping Algorithms
por: Miao, Yu, et al.
Publicado: (2021) -
An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features
por: He, Ying, et al.
Publicado: (2017) -
Sensor Fusion of Monocular Cameras and Laser Rangefinders for Line-Based Simultaneous Localization and Mapping (SLAM) Tasks in Autonomous Mobile Robots
por: Zhang, Xinzheng, et al.
Publicado: (2012)