Cargando…
Design of Dust-Filtering Algorithms for LiDAR Sensors Using Intensity and Range Information in Off-Road Vehicles †
Although the LiDAR sensor provides high-resolution point cloud data, its performance degrades when exposed to dust environments, which may cause a failure in perception for robotics applications. To address this issue, our study designed an intensity-based filter that can remove dust particles from...
Autores principales: | Afzalaghaeinaeini, Ali, Seo, Jaho, Lee, Dongwook, Lee, Hanmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185448/ https://www.ncbi.nlm.nih.gov/pubmed/35684673 http://dx.doi.org/10.3390/s22114051 |
Ejemplares similares
-
Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR
por: Sánchez, Manuel, et al.
Publicado: (2023) -
Performance of Mobile LiDAR in Real Road Driving Conditions
por: Kim, Jisoo, et al.
Publicado: (2021) -
Enhancing Solid State LiDAR Mapping with a 2D Spinning LiDAR in Urban Scenario SLAM on Ground Vehicles
por: Wei, Weichen, et al.
Publicado: (2021) -
LiDAR-OSM-Based Vehicle Localization in GPS-Denied Environments by Using Constrained Particle Filter
por: Elhousni, Mahdi, et al.
Publicado: (2022) -
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022)