Cargando…

MIF homolog d-dopachrome tautomerase (D-DT/MIF-2) does not inhibit accumulation and toxicity of misfolded SOD1

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons. About 20% of familial ALS cases are caused by dominant mutations in SOD1. It has been suggested that toxicity of mutant SOD1 results from its misfolding, however, it is un...

Descripción completa

Detalles Bibliográficos
Autores principales: Alaskarov, Amina, Barel, Shir, Bakavayev, Shamchal, Kahn, Joy, Israelson, Adrian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187739/
https://www.ncbi.nlm.nih.gov/pubmed/35688953
http://dx.doi.org/10.1038/s41598-022-13744-7
Descripción
Sumario:Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons. About 20% of familial ALS cases are caused by dominant mutations in SOD1. It has been suggested that toxicity of mutant SOD1 results from its misfolding, however, it is unclear why misfolded SOD1 accumulates within specific tissues. We have demonstrated that macrophage migration inhibitory factor (MIF), a multifunctional protein with cytokine/chemokine and chaperone-like activity, inhibits the accumulation and aggregation of misfolded SOD1. Although MIF homolog, D-dopachrome tautomerase (D-DT/MIF-2), shares structural and genetic similarities with MIF, its biological function is not well understood. In the current study, we investigated, for the first time, the mechanism of action of D-DT in a model of ALS. We show that D-DT inhibits mutant SOD1 amyloid aggregation in vitro, promoting the formation of amorphous aggregates. Moreover, we report that D-DT interacts with mutant SOD1, but does not inhibit misfolded mutant SOD1 accumulation and toxicity in neuronal cells. Finally, we show that D-DT is expressed mainly in liver and kidney, with extremely low expression in brain and spinal cord of adult mice. Our findings contribute to better understanding of D-DT versus MIF function in the context of ALS.