Cargando…
Dual antibody strategy for high-resolution imaging of murine Purkinje cells and their dendrites across multiple layers
Despite being among the largest neurons in the mammalian brain, Purkinje cells are difficult to visualize and trace via immunofluorescence because their dendritic arbors extend through several cerebellar layers. This protocol describes a two-antibody strategy we developed to study Purkinje cell morp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189630/ https://www.ncbi.nlm.nih.gov/pubmed/35707684 http://dx.doi.org/10.1016/j.xpro.2022.101427 |
Sumario: | Despite being among the largest neurons in the mammalian brain, Purkinje cells are difficult to visualize and trace via immunofluorescence because their dendritic arbors extend through several cerebellar layers. This protocol describes a two-antibody strategy we developed to study Purkinje cell morphology in mice. With it, one can reconstruct three-dimensional images of Purkinje cells at single-neuron resolution across multiple layers. The substantially improved image quality reveals subtle defects, enabling more meaningful morphological analysis. For complete details on the use and execution of this protocol, please refer to Gennarino et al. (2015). |
---|