Cargando…
Molecular determinants of inhibition of the human proton channel hHv1 by the designer peptide C6 and a bivalent derivative
The human voltage-gated proton channel (hHv1) is important for control of intracellular pH. We designed C6, a specific peptide inhibitor of hHv1, to evaluate the roles of the channel in sperm capacitation and in the inflammatory immune response of neutrophils [R. Zhao et al., Proc. Natl. Acad. Sci....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191634/ https://www.ncbi.nlm.nih.gov/pubmed/35648818 http://dx.doi.org/10.1073/pnas.2120750119 |
_version_ | 1784726058515300352 |
---|---|
author | Zhao, Ruiming Shen, Rong Dai, Hui Perozo, Eduardo Goldstein, Steve A. N. |
author_facet | Zhao, Ruiming Shen, Rong Dai, Hui Perozo, Eduardo Goldstein, Steve A. N. |
author_sort | Zhao, Ruiming |
collection | PubMed |
description | The human voltage-gated proton channel (hHv1) is important for control of intracellular pH. We designed C6, a specific peptide inhibitor of hHv1, to evaluate the roles of the channel in sperm capacitation and in the inflammatory immune response of neutrophils [R. Zhao et al., Proc. Natl. Acad. Sci. U.S.A. 115, E11847–E11856 (2018)]. One C6 binds with nanomolar affinity to each of the two S3–S4 voltage-sensor loops in hHv1 in cooperative fashion so that C6-bound channels require greater depolarization to open and do so more slowly. As depolarization drives hHv1 sensors outwardly, C6 affinity decreases, and inhibition is partial. Here, we identified residues essential to C6–hHv1 binding by scanning mutagenesis, five in the hHv1 S3–S4 loops and seven on C6. A structural model of the C6–hHv1 complex was then generated by molecular dynamics simulations and validated by mutant-cycle analysis. Guided by this model, we created a bivalent C6 peptide (C6(2)) that binds simultaneously to both hHv1 subunits and fully inhibits current with picomolar affinity. The results help delineate the structural basis for C6 state-dependent inhibition, support an anionic lipid-mediated binding mechanism, and offer molecular insight into the effectiveness of engineered C6 as a therapeutic agent or lead. |
format | Online Article Text |
id | pubmed-9191634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-91916342022-06-14 Molecular determinants of inhibition of the human proton channel hHv1 by the designer peptide C6 and a bivalent derivative Zhao, Ruiming Shen, Rong Dai, Hui Perozo, Eduardo Goldstein, Steve A. N. Proc Natl Acad Sci U S A Biological Sciences The human voltage-gated proton channel (hHv1) is important for control of intracellular pH. We designed C6, a specific peptide inhibitor of hHv1, to evaluate the roles of the channel in sperm capacitation and in the inflammatory immune response of neutrophils [R. Zhao et al., Proc. Natl. Acad. Sci. U.S.A. 115, E11847–E11856 (2018)]. One C6 binds with nanomolar affinity to each of the two S3–S4 voltage-sensor loops in hHv1 in cooperative fashion so that C6-bound channels require greater depolarization to open and do so more slowly. As depolarization drives hHv1 sensors outwardly, C6 affinity decreases, and inhibition is partial. Here, we identified residues essential to C6–hHv1 binding by scanning mutagenesis, five in the hHv1 S3–S4 loops and seven on C6. A structural model of the C6–hHv1 complex was then generated by molecular dynamics simulations and validated by mutant-cycle analysis. Guided by this model, we created a bivalent C6 peptide (C6(2)) that binds simultaneously to both hHv1 subunits and fully inhibits current with picomolar affinity. The results help delineate the structural basis for C6 state-dependent inhibition, support an anionic lipid-mediated binding mechanism, and offer molecular insight into the effectiveness of engineered C6 as a therapeutic agent or lead. National Academy of Sciences 2022-06-01 2022-06-07 /pmc/articles/PMC9191634/ /pubmed/35648818 http://dx.doi.org/10.1073/pnas.2120750119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Zhao, Ruiming Shen, Rong Dai, Hui Perozo, Eduardo Goldstein, Steve A. N. Molecular determinants of inhibition of the human proton channel hHv1 by the designer peptide C6 and a bivalent derivative |
title | Molecular determinants of inhibition of the human proton channel hHv1 by the designer peptide C6 and a bivalent derivative |
title_full | Molecular determinants of inhibition of the human proton channel hHv1 by the designer peptide C6 and a bivalent derivative |
title_fullStr | Molecular determinants of inhibition of the human proton channel hHv1 by the designer peptide C6 and a bivalent derivative |
title_full_unstemmed | Molecular determinants of inhibition of the human proton channel hHv1 by the designer peptide C6 and a bivalent derivative |
title_short | Molecular determinants of inhibition of the human proton channel hHv1 by the designer peptide C6 and a bivalent derivative |
title_sort | molecular determinants of inhibition of the human proton channel hhv1 by the designer peptide c6 and a bivalent derivative |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191634/ https://www.ncbi.nlm.nih.gov/pubmed/35648818 http://dx.doi.org/10.1073/pnas.2120750119 |
work_keys_str_mv | AT zhaoruiming moleculardeterminantsofinhibitionofthehumanprotonchannelhhv1bythedesignerpeptidec6andabivalentderivative AT shenrong moleculardeterminantsofinhibitionofthehumanprotonchannelhhv1bythedesignerpeptidec6andabivalentderivative AT daihui moleculardeterminantsofinhibitionofthehumanprotonchannelhhv1bythedesignerpeptidec6andabivalentderivative AT perozoeduardo moleculardeterminantsofinhibitionofthehumanprotonchannelhhv1bythedesignerpeptidec6andabivalentderivative AT goldsteinstevean moleculardeterminantsofinhibitionofthehumanprotonchannelhhv1bythedesignerpeptidec6andabivalentderivative |