Cargando…
Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers
Physiologically‐based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric infer...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197540/ https://www.ncbi.nlm.nih.gov/pubmed/35385609 http://dx.doi.org/10.1002/psp4.12787 |
_version_ | 1784727437471383552 |
---|---|
author | Wedagedera, Janak R. Afuape, Anthonia Chirumamilla, Siri Kalyan Momiji, Hiroshi Leary, Robert Dunlavey, Mike Matthews, Richard Abduljalil, Khaled Jamei, Masoud Bois, Frederic Y. |
author_facet | Wedagedera, Janak R. Afuape, Anthonia Chirumamilla, Siri Kalyan Momiji, Hiroshi Leary, Robert Dunlavey, Mike Matthews, Richard Abduljalil, Khaled Jamei, Masoud Bois, Frederic Y. |
author_sort | Wedagedera, Janak R. |
collection | PubMed |
description | Physiologically‐based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric inference. When clinical interindividual variability is high, or the data sparse, it is essential to use a population pharmacokinetics inferential framework to estimate unknown or uncertain parameters. Several approaches are available for that purpose, but their relative advantages for PBPK modeling are unclear. We compare the results obtained using a minimal PBPK model of a canonical theophylline dataset with quasi‐random parametric expectation maximization (QRPEM), nonparametric adaptive grid estimation (NPAG), Bayesian Metropolis‐Hastings (MH), and Hamiltonian Markov Chain Monte Carlo sampling. QRPEM and NPAG gave consistent population and individual parameter estimates, mostly agreeing with Bayesian estimates. MH simulations ran faster than the others methods, which together had similar performance. |
format | Online Article Text |
id | pubmed-9197540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91975402022-06-21 Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers Wedagedera, Janak R. Afuape, Anthonia Chirumamilla, Siri Kalyan Momiji, Hiroshi Leary, Robert Dunlavey, Mike Matthews, Richard Abduljalil, Khaled Jamei, Masoud Bois, Frederic Y. CPT Pharmacometrics Syst Pharmacol Research Physiologically‐based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric inference. When clinical interindividual variability is high, or the data sparse, it is essential to use a population pharmacokinetics inferential framework to estimate unknown or uncertain parameters. Several approaches are available for that purpose, but their relative advantages for PBPK modeling are unclear. We compare the results obtained using a minimal PBPK model of a canonical theophylline dataset with quasi‐random parametric expectation maximization (QRPEM), nonparametric adaptive grid estimation (NPAG), Bayesian Metropolis‐Hastings (MH), and Hamiltonian Markov Chain Monte Carlo sampling. QRPEM and NPAG gave consistent population and individual parameter estimates, mostly agreeing with Bayesian estimates. MH simulations ran faster than the others methods, which together had similar performance. John Wiley and Sons Inc. 2022-04-22 2022-06 /pmc/articles/PMC9197540/ /pubmed/35385609 http://dx.doi.org/10.1002/psp4.12787 Text en © 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Wedagedera, Janak R. Afuape, Anthonia Chirumamilla, Siri Kalyan Momiji, Hiroshi Leary, Robert Dunlavey, Mike Matthews, Richard Abduljalil, Khaled Jamei, Masoud Bois, Frederic Y. Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers |
title | Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers |
title_full | Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers |
title_fullStr | Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers |
title_full_unstemmed | Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers |
title_short | Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers |
title_sort | population pbpk modeling using parametric and nonparametric methods of the simcyp simulator, and bayesian samplers |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197540/ https://www.ncbi.nlm.nih.gov/pubmed/35385609 http://dx.doi.org/10.1002/psp4.12787 |
work_keys_str_mv | AT wedagederajanakr populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers AT afuapeanthonia populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers AT chirumamillasirikalyan populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers AT momijihiroshi populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers AT learyrobert populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers AT dunlaveymike populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers AT matthewsrichard populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers AT abduljalilkhaled populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers AT jameimasoud populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers AT boisfredericy populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers |