Cargando…

Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers

Physiologically‐based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric infer...

Descripción completa

Detalles Bibliográficos
Autores principales: Wedagedera, Janak R., Afuape, Anthonia, Chirumamilla, Siri Kalyan, Momiji, Hiroshi, Leary, Robert, Dunlavey, Mike, Matthews, Richard, Abduljalil, Khaled, Jamei, Masoud, Bois, Frederic Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197540/
https://www.ncbi.nlm.nih.gov/pubmed/35385609
http://dx.doi.org/10.1002/psp4.12787
_version_ 1784727437471383552
author Wedagedera, Janak R.
Afuape, Anthonia
Chirumamilla, Siri Kalyan
Momiji, Hiroshi
Leary, Robert
Dunlavey, Mike
Matthews, Richard
Abduljalil, Khaled
Jamei, Masoud
Bois, Frederic Y.
author_facet Wedagedera, Janak R.
Afuape, Anthonia
Chirumamilla, Siri Kalyan
Momiji, Hiroshi
Leary, Robert
Dunlavey, Mike
Matthews, Richard
Abduljalil, Khaled
Jamei, Masoud
Bois, Frederic Y.
author_sort Wedagedera, Janak R.
collection PubMed
description Physiologically‐based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric inference. When clinical interindividual variability is high, or the data sparse, it is essential to use a population pharmacokinetics inferential framework to estimate unknown or uncertain parameters. Several approaches are available for that purpose, but their relative advantages for PBPK modeling are unclear. We compare the results obtained using a minimal PBPK model of a canonical theophylline dataset with quasi‐random parametric expectation maximization (QRPEM), nonparametric adaptive grid estimation (NPAG), Bayesian Metropolis‐Hastings (MH), and Hamiltonian Markov Chain Monte Carlo sampling. QRPEM and NPAG gave consistent population and individual parameter estimates, mostly agreeing with Bayesian estimates. MH simulations ran faster than the others methods, which together had similar performance.
format Online
Article
Text
id pubmed-9197540
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-91975402022-06-21 Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers Wedagedera, Janak R. Afuape, Anthonia Chirumamilla, Siri Kalyan Momiji, Hiroshi Leary, Robert Dunlavey, Mike Matthews, Richard Abduljalil, Khaled Jamei, Masoud Bois, Frederic Y. CPT Pharmacometrics Syst Pharmacol Research Physiologically‐based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric inference. When clinical interindividual variability is high, or the data sparse, it is essential to use a population pharmacokinetics inferential framework to estimate unknown or uncertain parameters. Several approaches are available for that purpose, but their relative advantages for PBPK modeling are unclear. We compare the results obtained using a minimal PBPK model of a canonical theophylline dataset with quasi‐random parametric expectation maximization (QRPEM), nonparametric adaptive grid estimation (NPAG), Bayesian Metropolis‐Hastings (MH), and Hamiltonian Markov Chain Monte Carlo sampling. QRPEM and NPAG gave consistent population and individual parameter estimates, mostly agreeing with Bayesian estimates. MH simulations ran faster than the others methods, which together had similar performance. John Wiley and Sons Inc. 2022-04-22 2022-06 /pmc/articles/PMC9197540/ /pubmed/35385609 http://dx.doi.org/10.1002/psp4.12787 Text en © 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research
Wedagedera, Janak R.
Afuape, Anthonia
Chirumamilla, Siri Kalyan
Momiji, Hiroshi
Leary, Robert
Dunlavey, Mike
Matthews, Richard
Abduljalil, Khaled
Jamei, Masoud
Bois, Frederic Y.
Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers
title Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers
title_full Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers
title_fullStr Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers
title_full_unstemmed Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers
title_short Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers
title_sort population pbpk modeling using parametric and nonparametric methods of the simcyp simulator, and bayesian samplers
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197540/
https://www.ncbi.nlm.nih.gov/pubmed/35385609
http://dx.doi.org/10.1002/psp4.12787
work_keys_str_mv AT wedagederajanakr populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers
AT afuapeanthonia populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers
AT chirumamillasirikalyan populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers
AT momijihiroshi populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers
AT learyrobert populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers
AT dunlaveymike populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers
AT matthewsrichard populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers
AT abduljalilkhaled populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers
AT jameimasoud populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers
AT boisfredericy populationpbpkmodelingusingparametricandnonparametricmethodsofthesimcypsimulatorandbayesiansamplers