Cargando…
Impaired mitochondrial accumulation and Lewy pathology in neuron-specific FBXO7-deficient mice
Parkinson’s disease, the second most common neurodegenerative disorder, is characterized by the loss of nigrostriatal dopamine neurons. FBXO7 (F-box protein only 7) (PARK15) mutations cause early-onset Parkinson’s disease. FBXO7 is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin liga...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199167/ https://www.ncbi.nlm.nih.gov/pubmed/35701754 http://dx.doi.org/10.1186/s13041-022-00936-5 |
Sumario: | Parkinson’s disease, the second most common neurodegenerative disorder, is characterized by the loss of nigrostriatal dopamine neurons. FBXO7 (F-box protein only 7) (PARK15) mutations cause early-onset Parkinson’s disease. FBXO7 is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin ligase complex, but its neuronal relevance and function have not been elucidated. To determine its function in neurons, we generated neuronal cell-specific FBXO7 conditional knockout mice (FBXO7(flox/flox): Nestin-Cre) by crossing previously characterized FBXO7 floxed mice (FBXO7(flox/flox)) with Nestin-Cre mice (Nestin-Cre). The resultant Fbxo7(flox/flox): Nestin-Cre mice showed juvenile motor dysfunction, including hindlimb defects and decreased numbers of dopaminergic neurons. Fragmented mitochondria were observed in dopaminergic and cortical neurons. Furthermore, p62- and synuclein-positive Lewy body-like aggregates were identified in neurons. Our findings highlight the unexpected role of the homeostatic level of p62, which is regulated by a non-autophagic system that includes the ubiquitin–proteasome system, in controlling intracellular inclusion body formation. These data indicate that the pathologic processes associated with the proteolytic and mitochondrial degradation systems play a crucial role in the pathogenesis of PD. |
---|