Cargando…

Recombinant EGFL7 Mitigated Pressure Overload-Induced Cardiac Remodeling by Blocking PI3K [Formula: see text] /AKT/ [Formula: see text] Signaling in Macrophages

Inflammation and endothelial dysfunction play an essential role in heart failure (HF). Epidermal growth factor-like protein 7 (EGFL7) is upregulated during pathological hypoxia and exerts a protective role. However, it is unclear whether there is a link between abnormal EGFL7 expression and inflamma...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Lei, Zhao, Ying, Hu, Ying, Wang, Xiaohui, Jin, Qun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200063/
https://www.ncbi.nlm.nih.gov/pubmed/35721105
http://dx.doi.org/10.3389/fphar.2022.858118
Descripción
Sumario:Inflammation and endothelial dysfunction play an essential role in heart failure (HF). Epidermal growth factor-like protein 7 (EGFL7) is upregulated during pathological hypoxia and exerts a protective role. However, it is unclear whether there is a link between abnormal EGFL7 expression and inflammation in overload stress-induced heart failure. Our results showed that EGFL7 transiently increased during the early 4 weeks of TAC and in hypertensive patients without heart failure. However, it decreased to the basal line in the heart tissue 8 weeks post-transverse aortic constriction (TAC) or hypertensive patients with heart failure. Knockdown of EGFL7 with siRNA in vivo accelerated cardiac dysfunction, fibrosis, and macrophage infiltration 4 weeks after TAC. Deletion of macrophages in siRNA-EGFL7-TAC mice rescued that pathological phenotype. In vitro research revealed the mechanism. PI3K [Formula: see text] /AKT/N [Formula: see text] signaling in macrophages was activated by the supernatant from endothelial cells stimulated by siRNA-EGFL7+phenylephrine. More macrophages adhered to endothelial cells, but pretreatment of macrophages with PI3Kγ inhibitors decreased the adhesion of macrophages to endothelial cells. Ultimately, treatment with recombinant rmEGFL7 rescued cardiac dysfunction and macrophage infiltration in siRNA-EGFL7-TAC mice. In conclusion, EGFL7 is a potential inhibitor of macrophage adhesion to mouse aortic endothelial cells. The downregulation of EGFL7 combined with increased macrophage infiltration further promoted cardiac dysfunction under pressure overload stress. Mechanistically, EGFL7 reduced endothelial cell adhesion molecule expression and inhibited the PI3K [Formula: see text] /AKT/NF [Formula: see text] B signaling pathway in macrophages.