Cargando…

Risk of selection bias assessment in the NINDS rt-PA stroke study

OBJECTIVES: The NINDS rt-PA Stroke Study is frequently cited in support of alteplase for acute ischemic stroke within 3 h of symptom onset. Multiple post-hoc reanalyses of this trial have been published to adjust for a baseline imbalance in stroke severity. We performed a risk of selection bias asse...

Descripción completa

Detalles Bibliográficos
Autores principales: Garg, Ravi, Mickenautsch, Steffen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202115/
https://www.ncbi.nlm.nih.gov/pubmed/35705913
http://dx.doi.org/10.1186/s12874-022-01651-4
Descripción
Sumario:OBJECTIVES: The NINDS rt-PA Stroke Study is frequently cited in support of alteplase for acute ischemic stroke within 3 h of symptom onset. Multiple post-hoc reanalyses of this trial have been published to adjust for a baseline imbalance in stroke severity. We performed a risk of selection bias assessment and reanalyzed trial data to determine if the etiology of this baseline imbalance was more likely due to random chance or randomization errors. METHODS: A risk of selection bias assessment was conducted using signaling questions from the Cochrane Risk of Bias 2 (ROB 2) tool. Four sensitivity analyses were conducted on the trial data based on the randomization process: assessment of imbalances in allocation in unique strata; adherence to a pre-specified restriction on randomization between time strata at each randomization center; assessment of differences in baseline computed tomography (CT) results in unique strata; and comparison of baseline characteristics between allocation groups within each time strata. A multivariable logistic regression model was used to compare reported treatment effects with revised treatment effects after adjustment of baseline imbalances identified in the sensitivity analyses. RESULTS: Based on criteria from the ROB 2 tool, the risk of bias arising from the randomization process was high. Sensitivity analyses found 11 of 16 unique strata deviated from the expected 1:1 allocation ratio. Three randomization centers violated an apriori rule regarding a maximum difference in allocation between the time strata. Three unique strata had imbalances in baseline CT results that prognostically favored alteplase. Four imbalances in baseline characteristics were identified in the 91–180-min time stratum that all prognostically favored alteplase and were consistent with a larger alteplase treatment effect size compared to the 0–90-min time stratum. After adjustments for baseline imbalances, all reported treatment effects were reduced. Three out of seven originally positive reported results were revised to non-significant. CONCLUSION: This risk of selection bias assessment revealed a high risk of selection bias in the NINDS rt-PA Stroke Study. Sensitivity analyses conducted based on the randomization process supported this assessment. Baseline imbalances in the trial were more likely due to randomization errors than random chance. Adjusted analyses accounting for baseline imbalances revealed a reduction in reported treatment effects supporting the presence of selection bias in the trial. Treatment decisions and guideline recommendations based on the original treatment effect reported in the NINDS rt-PA Stroke Study should be done cautiously.