Cargando…

Experimental Study of the Influence of CH(4) and H(2) on the Conformation, Chemical Composition, and Luminescence of Silicon Quantum Dots Inlaid in Silicon Carbide Thin Films Grown by Remote Plasma-Enhanced Chemical Vapor Deposition

[Image: see text] Silicon carbide (SiC) has become an extraordinary photonic material. Achieving reproducible self-formation of silicon quantum dots (SiQDs) within SiC matrices could be beneficial for producing electroluminescent devices operating at high power, high temperatures, or high voltages....

Descripción completa

Detalles Bibliográficos
Autores principales: León-Guillén, Rodrigo, Muñoz-Rosas, Ana Luz, Arenas-Alatorre, Jesús A., Alonso-Huitrón, Juan Carlos, Pérez-Martínez, Ana Laura, Rodríguez-Gómez, Arturo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202280/
https://www.ncbi.nlm.nih.gov/pubmed/35721970
http://dx.doi.org/10.1021/acsomega.2c01384
Descripción
Sumario:[Image: see text] Silicon carbide (SiC) has become an extraordinary photonic material. Achieving reproducible self-formation of silicon quantum dots (SiQDs) within SiC matrices could be beneficial for producing electroluminescent devices operating at high power, high temperatures, or high voltages. In this work, we use a remote plasma-enhanced chemical vapor deposition system to grow SiC thin films. We identified that a particular combination of 20 sccm of CH(4) and a range of 58–100 sccm of H(2) mass flow with 600 °C annealing allows the abundant and reproducible self-formation of SiQDs within the SiC films. These SiQDs dramatically increase the photoluminescence-integrated intensity of our SiC films. The photoluminescence of our SiQDs shows a normal distribution with positive skewness and well-defined intensity maxima in blue regions of the electromagnetic spectrum (439–465 nm) and is clearly perceptible to the naked eye.