Cargando…
Molecular and functional basis of high-salt avoidance in a blood-sucking insect
Salts are essential nutrients required for many physiological processes, and accordingly, their composition and concentration are tightly regulated. Taste is the ultimate sensory modality involved in resource quality assessment, resulting in acceptance or rejection. Here we found that high salt conc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204723/ https://www.ncbi.nlm.nih.gov/pubmed/35720264 http://dx.doi.org/10.1016/j.isci.2022.104502 |
_version_ | 1784728987280343040 |
---|---|
author | Pontes, Gina Latorre-Estivalis, José Manuel Gutiérrez, María Laura Cano, Agustina Berón de Astrada, Martin Lorenzo, Marcelo G. Barrozo, Romina B. |
author_facet | Pontes, Gina Latorre-Estivalis, José Manuel Gutiérrez, María Laura Cano, Agustina Berón de Astrada, Martin Lorenzo, Marcelo G. Barrozo, Romina B. |
author_sort | Pontes, Gina |
collection | PubMed |
description | Salts are essential nutrients required for many physiological processes, and accordingly, their composition and concentration are tightly regulated. Taste is the ultimate sensory modality involved in resource quality assessment, resulting in acceptance or rejection. Here we found that high salt concentrations elicit feeding avoidance in the blood-sucking bug Rhodnius prolixus and elucidate the molecular and neurophysiological mechanisms involved. We found that high-salt avoidance is mediated by a salt-sensitive antennal gustatory receptor neuron (GRN). Using RNAi, we demonstrate that this process requires two amiloride-sensitive pickpocket channels (PPKs; RproPPK014276 and RproPPK28) expressed within these cells. We found that antennal GRNs project to the insect primary olfactory center, the antennal lobes, revealing these centers as potential sites for the integration of taste and olfactory host-derived cues. Moreover, the identification of the gustatory basis of high-salt detection in a hematophagous insect suggests novel targets for the prevention of biting and feeding. |
format | Online Article Text |
id | pubmed-9204723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92047232022-06-18 Molecular and functional basis of high-salt avoidance in a blood-sucking insect Pontes, Gina Latorre-Estivalis, José Manuel Gutiérrez, María Laura Cano, Agustina Berón de Astrada, Martin Lorenzo, Marcelo G. Barrozo, Romina B. iScience Article Salts are essential nutrients required for many physiological processes, and accordingly, their composition and concentration are tightly regulated. Taste is the ultimate sensory modality involved in resource quality assessment, resulting in acceptance or rejection. Here we found that high salt concentrations elicit feeding avoidance in the blood-sucking bug Rhodnius prolixus and elucidate the molecular and neurophysiological mechanisms involved. We found that high-salt avoidance is mediated by a salt-sensitive antennal gustatory receptor neuron (GRN). Using RNAi, we demonstrate that this process requires two amiloride-sensitive pickpocket channels (PPKs; RproPPK014276 and RproPPK28) expressed within these cells. We found that antennal GRNs project to the insect primary olfactory center, the antennal lobes, revealing these centers as potential sites for the integration of taste and olfactory host-derived cues. Moreover, the identification of the gustatory basis of high-salt detection in a hematophagous insect suggests novel targets for the prevention of biting and feeding. Elsevier 2022-06-02 /pmc/articles/PMC9204723/ /pubmed/35720264 http://dx.doi.org/10.1016/j.isci.2022.104502 Text en © 2022. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Pontes, Gina Latorre-Estivalis, José Manuel Gutiérrez, María Laura Cano, Agustina Berón de Astrada, Martin Lorenzo, Marcelo G. Barrozo, Romina B. Molecular and functional basis of high-salt avoidance in a blood-sucking insect |
title | Molecular and functional basis of high-salt avoidance in a blood-sucking insect |
title_full | Molecular and functional basis of high-salt avoidance in a blood-sucking insect |
title_fullStr | Molecular and functional basis of high-salt avoidance in a blood-sucking insect |
title_full_unstemmed | Molecular and functional basis of high-salt avoidance in a blood-sucking insect |
title_short | Molecular and functional basis of high-salt avoidance in a blood-sucking insect |
title_sort | molecular and functional basis of high-salt avoidance in a blood-sucking insect |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204723/ https://www.ncbi.nlm.nih.gov/pubmed/35720264 http://dx.doi.org/10.1016/j.isci.2022.104502 |
work_keys_str_mv | AT pontesgina molecularandfunctionalbasisofhighsaltavoidanceinabloodsuckinginsect AT latorreestivalisjosemanuel molecularandfunctionalbasisofhighsaltavoidanceinabloodsuckinginsect AT gutierrezmarialaura molecularandfunctionalbasisofhighsaltavoidanceinabloodsuckinginsect AT canoagustina molecularandfunctionalbasisofhighsaltavoidanceinabloodsuckinginsect AT berondeastradamartin molecularandfunctionalbasisofhighsaltavoidanceinabloodsuckinginsect AT lorenzomarcelog molecularandfunctionalbasisofhighsaltavoidanceinabloodsuckinginsect AT barrozorominab molecularandfunctionalbasisofhighsaltavoidanceinabloodsuckinginsect |