Cargando…

Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R

Due to a lack of explicit temporal information, it can be challenging to infer gene regulatory networks from clinical transcriptomic data. Here, we describe the protocol of PROB_R for inferring latent temporal disease progression and reconstructing gene regulatory networks from cross-sectional clini...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Zhaorui, Sun, Xiaoqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207570/
https://www.ncbi.nlm.nih.gov/pubmed/35733604
http://dx.doi.org/10.1016/j.xpro.2022.101467
_version_ 1784729561643089920
author Dong, Zhaorui
Sun, Xiaoqiang
author_facet Dong, Zhaorui
Sun, Xiaoqiang
author_sort Dong, Zhaorui
collection PubMed
description Due to a lack of explicit temporal information, it can be challenging to infer gene regulatory networks from clinical transcriptomic data. Here, we describe the protocol of PROB_R for inferring latent temporal disease progression and reconstructing gene regulatory networks from cross-sectional clinical transcriptomic data. We illustrate the protocol by applying it to a breast cancer dataset to demonstrate its use in recovering pseudo-temporal dynamics of gene expression alongside disease progression, reconstructing gene regulatory networks, and identifying key regulatory genes. For complete details on the use and execution of this protocol, please refer to Sun et al. (2021).
format Online
Article
Text
id pubmed-9207570
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-92075702022-06-21 Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R Dong, Zhaorui Sun, Xiaoqiang STAR Protoc Protocol Due to a lack of explicit temporal information, it can be challenging to infer gene regulatory networks from clinical transcriptomic data. Here, we describe the protocol of PROB_R for inferring latent temporal disease progression and reconstructing gene regulatory networks from cross-sectional clinical transcriptomic data. We illustrate the protocol by applying it to a breast cancer dataset to demonstrate its use in recovering pseudo-temporal dynamics of gene expression alongside disease progression, reconstructing gene regulatory networks, and identifying key regulatory genes. For complete details on the use and execution of this protocol, please refer to Sun et al. (2021). Elsevier 2022-06-14 /pmc/articles/PMC9207570/ /pubmed/35733604 http://dx.doi.org/10.1016/j.xpro.2022.101467 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Dong, Zhaorui
Sun, Xiaoqiang
Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R
title Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R
title_full Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R
title_fullStr Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R
title_full_unstemmed Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R
title_short Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R
title_sort inferring disease progression and gene regulatory networks from clinical transcriptomic data using prob_r
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207570/
https://www.ncbi.nlm.nih.gov/pubmed/35733604
http://dx.doi.org/10.1016/j.xpro.2022.101467
work_keys_str_mv AT dongzhaorui inferringdiseaseprogressionandgeneregulatorynetworksfromclinicaltranscriptomicdatausingprobr
AT sunxiaoqiang inferringdiseaseprogressionandgeneregulatorynetworksfromclinicaltranscriptomicdatausingprobr