Cargando…
The Level of Histone Deacetylase 4 is Associated with Aging Cartilage Degeneration and Chondrocyte Hypertrophy
PURPOSE: To determine the role of histone deacetylase 4 (HDAC4)-controlled chondrocyte hypertrophy in the onset and development of age-related osteoarthritis (OA). METHODS: Morphological analysis of human knee cartilages was performed to observe structural changes during cartilage degeneration. HDAC...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208673/ https://www.ncbi.nlm.nih.gov/pubmed/35734099 http://dx.doi.org/10.2147/JIR.S365545 |
_version_ | 1784729773788889088 |
---|---|
author | Dong, Zhengquan Ma, Zhou Yang, Meiju Cong, Linlin Zhao, Ruipeng Cheng, Liyun Sun, Jian Wang, Yunfei Yang, Ruijia Wei, Xiaochun Li, Pengcui |
author_facet | Dong, Zhengquan Ma, Zhou Yang, Meiju Cong, Linlin Zhao, Ruipeng Cheng, Liyun Sun, Jian Wang, Yunfei Yang, Ruijia Wei, Xiaochun Li, Pengcui |
author_sort | Dong, Zhengquan |
collection | PubMed |
description | PURPOSE: To determine the role of histone deacetylase 4 (HDAC4)-controlled chondrocyte hypertrophy in the onset and development of age-related osteoarthritis (OA). METHODS: Morphological analysis of human knee cartilages was performed to observe structural changes during cartilage degeneration. HDAC4 expression was deleted in adult aggrecan (Acan)-CreERT2; HDAC4fl/fl transgenic mice. The onset and development of age-related OA were investigated in transgenic and control mice using hematoxylin and eosin (H&E) and Safranin O staining. Furthermore, the progression of ACLT-induced OA following adenovirus-mediated HDAC4 overexpression was explored in rats. The expression levels of genes related to hypertrophy, cartilage matrix and its digestion, and chondrocyte proliferation were investigated using qPCR. Immunohistochemistry (IHC) was used to explore the mechanisms underlying HDAC4-controlled age-related changes in OA progression. RESULTS: In human cartilage, we performed morphological analysis and IHC, the results showed that hypertrophy-related structural changes are related to HDAC4 expression. Age-related OA was detected early (OARSI scores 2.7 at 8-month-old) following HDAC4 deletion in 2-month-old mice. Furthermore, qPCR and IHC results showed changes in hypertrophy-related genes Col10a1, Runx2 and Sox9 in chondrocytes, particularly in the expression of Runt-related transcription factor 2 (Runx2, 13.29±0.99 fold). The expression of the main cartilage matrix-related genes Col2a1 and Acan decreased, that of cartilage matrix digestion-related gene MMP-13 increased, while that of chondrocyte proliferation-related genes PTHrP, Ihh and Gli1 changed. In contrast, rat cartilage’s qPCR and IHC results showed opposite outcomes after HDAC4 overexpression. CONCLUSION: Based on the results above, we concluded that HDAC4 expression regulates the onset and development of age-related OA by controlling chondrocyte hypertrophy. These results may help in the development of early diagnosis and treatment of age-related OA. |
format | Online Article Text |
id | pubmed-9208673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-92086732022-06-21 The Level of Histone Deacetylase 4 is Associated with Aging Cartilage Degeneration and Chondrocyte Hypertrophy Dong, Zhengquan Ma, Zhou Yang, Meiju Cong, Linlin Zhao, Ruipeng Cheng, Liyun Sun, Jian Wang, Yunfei Yang, Ruijia Wei, Xiaochun Li, Pengcui J Inflamm Res Original Research PURPOSE: To determine the role of histone deacetylase 4 (HDAC4)-controlled chondrocyte hypertrophy in the onset and development of age-related osteoarthritis (OA). METHODS: Morphological analysis of human knee cartilages was performed to observe structural changes during cartilage degeneration. HDAC4 expression was deleted in adult aggrecan (Acan)-CreERT2; HDAC4fl/fl transgenic mice. The onset and development of age-related OA were investigated in transgenic and control mice using hematoxylin and eosin (H&E) and Safranin O staining. Furthermore, the progression of ACLT-induced OA following adenovirus-mediated HDAC4 overexpression was explored in rats. The expression levels of genes related to hypertrophy, cartilage matrix and its digestion, and chondrocyte proliferation were investigated using qPCR. Immunohistochemistry (IHC) was used to explore the mechanisms underlying HDAC4-controlled age-related changes in OA progression. RESULTS: In human cartilage, we performed morphological analysis and IHC, the results showed that hypertrophy-related structural changes are related to HDAC4 expression. Age-related OA was detected early (OARSI scores 2.7 at 8-month-old) following HDAC4 deletion in 2-month-old mice. Furthermore, qPCR and IHC results showed changes in hypertrophy-related genes Col10a1, Runx2 and Sox9 in chondrocytes, particularly in the expression of Runt-related transcription factor 2 (Runx2, 13.29±0.99 fold). The expression of the main cartilage matrix-related genes Col2a1 and Acan decreased, that of cartilage matrix digestion-related gene MMP-13 increased, while that of chondrocyte proliferation-related genes PTHrP, Ihh and Gli1 changed. In contrast, rat cartilage’s qPCR and IHC results showed opposite outcomes after HDAC4 overexpression. CONCLUSION: Based on the results above, we concluded that HDAC4 expression regulates the onset and development of age-related OA by controlling chondrocyte hypertrophy. These results may help in the development of early diagnosis and treatment of age-related OA. Dove 2022-06-16 /pmc/articles/PMC9208673/ /pubmed/35734099 http://dx.doi.org/10.2147/JIR.S365545 Text en © 2022 Dong et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Dong, Zhengquan Ma, Zhou Yang, Meiju Cong, Linlin Zhao, Ruipeng Cheng, Liyun Sun, Jian Wang, Yunfei Yang, Ruijia Wei, Xiaochun Li, Pengcui The Level of Histone Deacetylase 4 is Associated with Aging Cartilage Degeneration and Chondrocyte Hypertrophy |
title | The Level of Histone Deacetylase 4 is Associated with Aging Cartilage Degeneration and Chondrocyte Hypertrophy |
title_full | The Level of Histone Deacetylase 4 is Associated with Aging Cartilage Degeneration and Chondrocyte Hypertrophy |
title_fullStr | The Level of Histone Deacetylase 4 is Associated with Aging Cartilage Degeneration and Chondrocyte Hypertrophy |
title_full_unstemmed | The Level of Histone Deacetylase 4 is Associated with Aging Cartilage Degeneration and Chondrocyte Hypertrophy |
title_short | The Level of Histone Deacetylase 4 is Associated with Aging Cartilage Degeneration and Chondrocyte Hypertrophy |
title_sort | level of histone deacetylase 4 is associated with aging cartilage degeneration and chondrocyte hypertrophy |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208673/ https://www.ncbi.nlm.nih.gov/pubmed/35734099 http://dx.doi.org/10.2147/JIR.S365545 |
work_keys_str_mv | AT dongzhengquan thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT mazhou thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT yangmeiju thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT conglinlin thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT zhaoruipeng thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT chengliyun thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT sunjian thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT wangyunfei thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT yangruijia thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT weixiaochun thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT lipengcui thelevelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT dongzhengquan levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT mazhou levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT yangmeiju levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT conglinlin levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT zhaoruipeng levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT chengliyun levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT sunjian levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT wangyunfei levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT yangruijia levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT weixiaochun levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy AT lipengcui levelofhistonedeacetylase4isassociatedwithagingcartilagedegenerationandchondrocytehypertrophy |