Cargando…
HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values
Dataset integration is common practice to overcome limitations in statistically underpowered omics datasets. Proteome datasets display high technical variability and frequent missing values. Sophisticated strategies for batch effect reduction are lacking or rely on error-prone data imputation. Here...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209422/ https://www.ncbi.nlm.nih.gov/pubmed/35725563 http://dx.doi.org/10.1038/s41467-022-31007-x |
_version_ | 1784729951861211136 |
---|---|
author | Voß, Hannah Schlumbohm, Simon Barwikowski, Philip Wurlitzer, Marcus Dottermusch, Matthias Neumann, Philipp Schlüter, Hartmut Neumann, Julia E. Krisp, Christoph |
author_facet | Voß, Hannah Schlumbohm, Simon Barwikowski, Philip Wurlitzer, Marcus Dottermusch, Matthias Neumann, Philipp Schlüter, Hartmut Neumann, Julia E. Krisp, Christoph |
author_sort | Voß, Hannah |
collection | PubMed |
description | Dataset integration is common practice to overcome limitations in statistically underpowered omics datasets. Proteome datasets display high technical variability and frequent missing values. Sophisticated strategies for batch effect reduction are lacking or rely on error-prone data imputation. Here we introduce HarmonizR, a data harmonization tool with appropriate missing value handling. The method exploits the structure of available data and matrix dissection for minimal data loss, without data imputation. This strategy implements two common batch effect reduction methods—ComBat and limma (removeBatchEffect()). The HarmonizR strategy, evaluated on four exemplarily analyzed datasets with up to 23 batches, demonstrated successful data harmonization for different tissue preservation techniques, LC-MS/MS instrumentation setups, and quantification approaches. Compared to data imputation methods, HarmonizR was more efficient and performed superior regarding the detection of significant proteins. HarmonizR is an efficient tool for missing data tolerant experimental variance reduction and is easily adjustable for individual dataset properties and user preferences. |
format | Online Article Text |
id | pubmed-9209422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-92094222022-06-22 HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values Voß, Hannah Schlumbohm, Simon Barwikowski, Philip Wurlitzer, Marcus Dottermusch, Matthias Neumann, Philipp Schlüter, Hartmut Neumann, Julia E. Krisp, Christoph Nat Commun Article Dataset integration is common practice to overcome limitations in statistically underpowered omics datasets. Proteome datasets display high technical variability and frequent missing values. Sophisticated strategies for batch effect reduction are lacking or rely on error-prone data imputation. Here we introduce HarmonizR, a data harmonization tool with appropriate missing value handling. The method exploits the structure of available data and matrix dissection for minimal data loss, without data imputation. This strategy implements two common batch effect reduction methods—ComBat and limma (removeBatchEffect()). The HarmonizR strategy, evaluated on four exemplarily analyzed datasets with up to 23 batches, demonstrated successful data harmonization for different tissue preservation techniques, LC-MS/MS instrumentation setups, and quantification approaches. Compared to data imputation methods, HarmonizR was more efficient and performed superior regarding the detection of significant proteins. HarmonizR is an efficient tool for missing data tolerant experimental variance reduction and is easily adjustable for individual dataset properties and user preferences. Nature Publishing Group UK 2022-06-20 /pmc/articles/PMC9209422/ /pubmed/35725563 http://dx.doi.org/10.1038/s41467-022-31007-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Voß, Hannah Schlumbohm, Simon Barwikowski, Philip Wurlitzer, Marcus Dottermusch, Matthias Neumann, Philipp Schlüter, Hartmut Neumann, Julia E. Krisp, Christoph HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values |
title | HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values |
title_full | HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values |
title_fullStr | HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values |
title_full_unstemmed | HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values |
title_short | HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values |
title_sort | harmonizr enables data harmonization across independent proteomic datasets with appropriate handling of missing values |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209422/ https://www.ncbi.nlm.nih.gov/pubmed/35725563 http://dx.doi.org/10.1038/s41467-022-31007-x |
work_keys_str_mv | AT voßhannah harmonizrenablesdataharmonizationacrossindependentproteomicdatasetswithappropriatehandlingofmissingvalues AT schlumbohmsimon harmonizrenablesdataharmonizationacrossindependentproteomicdatasetswithappropriatehandlingofmissingvalues AT barwikowskiphilip harmonizrenablesdataharmonizationacrossindependentproteomicdatasetswithappropriatehandlingofmissingvalues AT wurlitzermarcus harmonizrenablesdataharmonizationacrossindependentproteomicdatasetswithappropriatehandlingofmissingvalues AT dottermuschmatthias harmonizrenablesdataharmonizationacrossindependentproteomicdatasetswithappropriatehandlingofmissingvalues AT neumannphilipp harmonizrenablesdataharmonizationacrossindependentproteomicdatasetswithappropriatehandlingofmissingvalues AT schluterhartmut harmonizrenablesdataharmonizationacrossindependentproteomicdatasetswithappropriatehandlingofmissingvalues AT neumannjuliae harmonizrenablesdataharmonizationacrossindependentproteomicdatasetswithappropriatehandlingofmissingvalues AT krispchristoph harmonizrenablesdataharmonizationacrossindependentproteomicdatasetswithappropriatehandlingofmissingvalues |