Cargando…

A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling

Mechanistic models of how single cells respond to different perturbations can help integrate disparate big data sets or predict response to varied drug combinations. However, the construction and simulation of such models have proved challenging. Here, we developed a python-based model creation and...

Descripción completa

Detalles Bibliográficos
Autores principales: Erdem, Cemal, Mutsuddy, Arnab, Bensman, Ethan M., Dodd, William B., Saint-Antoine, Michael M., Bouhaddou, Mehdi, Blake, Robert C., Gross, Sean M., Heiser, Laura M., Feltus, F. Alex, Birtwistle, Marc R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213456/
https://www.ncbi.nlm.nih.gov/pubmed/35729113
http://dx.doi.org/10.1038/s41467-022-31138-1
_version_ 1784730847628230656
author Erdem, Cemal
Mutsuddy, Arnab
Bensman, Ethan M.
Dodd, William B.
Saint-Antoine, Michael M.
Bouhaddou, Mehdi
Blake, Robert C.
Gross, Sean M.
Heiser, Laura M.
Feltus, F. Alex
Birtwistle, Marc R.
author_facet Erdem, Cemal
Mutsuddy, Arnab
Bensman, Ethan M.
Dodd, William B.
Saint-Antoine, Michael M.
Bouhaddou, Mehdi
Blake, Robert C.
Gross, Sean M.
Heiser, Laura M.
Feltus, F. Alex
Birtwistle, Marc R.
author_sort Erdem, Cemal
collection PubMed
description Mechanistic models of how single cells respond to different perturbations can help integrate disparate big data sets or predict response to varied drug combinations. However, the construction and simulation of such models have proved challenging. Here, we developed a python-based model creation and simulation pipeline that converts a few structured text files into an SBML standard and is high-performance- and cloud-computing ready. We applied this pipeline to our large-scale, mechanistic pan-cancer signaling model (named SPARCED) and demonstrate it by adding an IFNγ pathway submodel. We then investigated whether a putative crosstalk mechanism could be consistent with experimental observations from the LINCS MCF10A Data Cube that IFNγ acts as an anti-proliferative factor. The analyses suggested this observation can be explained by IFNγ-induced SOCS1 sequestering activated EGF receptors. This work forms a foundational recipe for increased mechanistic model-based data integration on a single-cell level, an important building block for clinically-predictive mechanistic models.
format Online
Article
Text
id pubmed-9213456
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92134562022-06-23 A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling Erdem, Cemal Mutsuddy, Arnab Bensman, Ethan M. Dodd, William B. Saint-Antoine, Michael M. Bouhaddou, Mehdi Blake, Robert C. Gross, Sean M. Heiser, Laura M. Feltus, F. Alex Birtwistle, Marc R. Nat Commun Article Mechanistic models of how single cells respond to different perturbations can help integrate disparate big data sets or predict response to varied drug combinations. However, the construction and simulation of such models have proved challenging. Here, we developed a python-based model creation and simulation pipeline that converts a few structured text files into an SBML standard and is high-performance- and cloud-computing ready. We applied this pipeline to our large-scale, mechanistic pan-cancer signaling model (named SPARCED) and demonstrate it by adding an IFNγ pathway submodel. We then investigated whether a putative crosstalk mechanism could be consistent with experimental observations from the LINCS MCF10A Data Cube that IFNγ acts as an anti-proliferative factor. The analyses suggested this observation can be explained by IFNγ-induced SOCS1 sequestering activated EGF receptors. This work forms a foundational recipe for increased mechanistic model-based data integration on a single-cell level, an important building block for clinically-predictive mechanistic models. Nature Publishing Group UK 2022-06-21 /pmc/articles/PMC9213456/ /pubmed/35729113 http://dx.doi.org/10.1038/s41467-022-31138-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Erdem, Cemal
Mutsuddy, Arnab
Bensman, Ethan M.
Dodd, William B.
Saint-Antoine, Michael M.
Bouhaddou, Mehdi
Blake, Robert C.
Gross, Sean M.
Heiser, Laura M.
Feltus, F. Alex
Birtwistle, Marc R.
A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling
title A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling
title_full A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling
title_fullStr A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling
title_full_unstemmed A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling
title_short A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling
title_sort scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213456/
https://www.ncbi.nlm.nih.gov/pubmed/35729113
http://dx.doi.org/10.1038/s41467-022-31138-1
work_keys_str_mv AT erdemcemal ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT mutsuddyarnab ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT bensmanethanm ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT doddwilliamb ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT saintantoinemichaelm ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT bouhaddoumehdi ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT blakerobertc ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT grossseanm ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT heiserlauram ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT feltusfalex ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT birtwistlemarcr ascalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT erdemcemal scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT mutsuddyarnab scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT bensmanethanm scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT doddwilliamb scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT saintantoinemichaelm scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT bouhaddoumehdi scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT blakerobertc scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT grossseanm scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT heiserlauram scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT feltusfalex scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling
AT birtwistlemarcr scalableopensourceimplementationofalargescalemechanisticmodelforsinglecellproliferationanddeathsignaling