Cargando…

Efficient transgenesis and homology-directed gene targeting in monolayers of primary human small intestinal and colonic epithelial stem cells

Two-dimensional (2D) cultures of intestinal and colonic epithelium can be generated using human intestinal stem cells (hISCs) derived from primary tissue sources. These 2D cultures are emerging as attractive and versatile alternatives to three-dimensional organoid cultures; however, transgenesis and...

Descripción completa

Detalles Bibliográficos
Autores principales: Breau, Keith A., Ok, Meryem T., Gomez-Martinez, Ismael, Burclaff, Joseph, Kohn, Nathan P., Magness, Scott T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213823/
https://www.ncbi.nlm.nih.gov/pubmed/35523179
http://dx.doi.org/10.1016/j.stemcr.2022.04.005
Descripción
Sumario:Two-dimensional (2D) cultures of intestinal and colonic epithelium can be generated using human intestinal stem cells (hISCs) derived from primary tissue sources. These 2D cultures are emerging as attractive and versatile alternatives to three-dimensional organoid cultures; however, transgenesis and gene-editing approaches have not been developed for hISCs grown as 2D monolayers. Using 2D cultured hISCs we show that electroporation achieves up to 80% transfection in hISCs from six anatomical regions with around 64% survival and produces 0.15% transgenesis by PiggyBac transposase and 35% gene edited indels by electroporation of Cas9-ribonucleoprotein complexes at the OLFM4 locus. We create OLFM4-emGFP knock-in hISCs, validate the reporter on engineered 2D crypt devices, and develop complete workflows for high-throughput cloning and expansion of transgenic lines in 3–4 weeks. New findings demonstrate small hISCs expressing the highest OLFM4 levels exhibit the most organoid forming potential and show utility of the 2D crypt device to evaluate hISC function.