Cargando…

Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions

The classification of effects caused by mixtures of agents as synergistic, antagonistic or additive depends critically on the reference model of ’null interaction’. Two main approaches to describe co-operative effects are currently in use, the Additive Dose (ADM) or concentration addition (CA) and t...

Descripción completa

Detalles Bibliográficos
Autor principal: Schindler, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217971/
https://www.ncbi.nlm.nih.gov/pubmed/35732854
http://dx.doi.org/10.1038/s41598-022-13469-7
_version_ 1784731777734017024
author Schindler, Michael
author_facet Schindler, Michael
author_sort Schindler, Michael
collection PubMed
description The classification of effects caused by mixtures of agents as synergistic, antagonistic or additive depends critically on the reference model of ’null interaction’. Two main approaches to describe co-operative effects are currently in use, the Additive Dose (ADM) or concentration addition (CA) and the Multiplicative Survival (MSM) or independent action (IA) models. Recently we proposed an approach which describes ’zero-interaction’ surfaces based on the only requirement that simultaneous administration of different drugs leads to Hill-type response surfaces, which are solutions of the underlying logistic differential equations. No further assumptions, neither on mechanisms of action nor on limitations of parameter combinations are required. This defines—and limits—the application range of our approach. Resting on the same principle, we extend this ansatz in the present paper in order to describe deviations from the reference surface by generalized Hill-type functions. To this end we introduce two types of parameters, perturbations of the pure drug Hill-parameters and interaction parameters that account for n-tuple interactions between all components of a mixture. The resulting ‘full-interaction’ response surface is a valid solution of the basic partial differential equation (PDE), satisfying appropriate boundary conditions. This is true irrespective of its actual functional form, as within our framework the number of parameters is not fixed. We start by fitting the experimental data to the ‘full-interaction’ model with the maximum possible number of parameters. Guided by the fit-statistics, we then gradually remove insignificant parameters until the optimum response surface model is obtained. The ’full-interaction’ Hill response surface ansatz can be applied to mixtures of n compounds with arbitrary Hill parameters including those describing baseline effects. Synergy surfaces, i.e., differences between full- and null-interaction models, are used to identify dose-combinations showing peak synergies. We apply our approach to binary and ternary examples from the literature, which range from mixtures behaving according to the null-interaction model to those showing strong synergistic or antagonistic effects. By comparing ’null-’ and ’full-response’ surfaces we identify those dose-combinations that lead to maximum synergistic or antagonistic effects. In one example we identify both synergistic and antagonistic effects simlutaneously, depending on the dose-ratio of the components. In addition we show that often the number of parameters necessary to describe the response can be reduced without significantly affecting the accuracy. This facilitates an analysis of the synergistic effects by focussing on the main factors causing the deviations from ’null-interaction’.
format Online
Article
Text
id pubmed-9217971
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92179712022-06-24 Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions Schindler, Michael Sci Rep Article The classification of effects caused by mixtures of agents as synergistic, antagonistic or additive depends critically on the reference model of ’null interaction’. Two main approaches to describe co-operative effects are currently in use, the Additive Dose (ADM) or concentration addition (CA) and the Multiplicative Survival (MSM) or independent action (IA) models. Recently we proposed an approach which describes ’zero-interaction’ surfaces based on the only requirement that simultaneous administration of different drugs leads to Hill-type response surfaces, which are solutions of the underlying logistic differential equations. No further assumptions, neither on mechanisms of action nor on limitations of parameter combinations are required. This defines—and limits—the application range of our approach. Resting on the same principle, we extend this ansatz in the present paper in order to describe deviations from the reference surface by generalized Hill-type functions. To this end we introduce two types of parameters, perturbations of the pure drug Hill-parameters and interaction parameters that account for n-tuple interactions between all components of a mixture. The resulting ‘full-interaction’ response surface is a valid solution of the basic partial differential equation (PDE), satisfying appropriate boundary conditions. This is true irrespective of its actual functional form, as within our framework the number of parameters is not fixed. We start by fitting the experimental data to the ‘full-interaction’ model with the maximum possible number of parameters. Guided by the fit-statistics, we then gradually remove insignificant parameters until the optimum response surface model is obtained. The ’full-interaction’ Hill response surface ansatz can be applied to mixtures of n compounds with arbitrary Hill parameters including those describing baseline effects. Synergy surfaces, i.e., differences between full- and null-interaction models, are used to identify dose-combinations showing peak synergies. We apply our approach to binary and ternary examples from the literature, which range from mixtures behaving according to the null-interaction model to those showing strong synergistic or antagonistic effects. By comparing ’null-’ and ’full-response’ surfaces we identify those dose-combinations that lead to maximum synergistic or antagonistic effects. In one example we identify both synergistic and antagonistic effects simlutaneously, depending on the dose-ratio of the components. In addition we show that often the number of parameters necessary to describe the response can be reduced without significantly affecting the accuracy. This facilitates an analysis of the synergistic effects by focussing on the main factors causing the deviations from ’null-interaction’. Nature Publishing Group UK 2022-06-22 /pmc/articles/PMC9217971/ /pubmed/35732854 http://dx.doi.org/10.1038/s41598-022-13469-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Schindler, Michael
Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions
title Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions
title_full Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions
title_fullStr Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions
title_full_unstemmed Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions
title_short Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions
title_sort modeling synergistic effects by using general hill-type response surfaces describing drug interactions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217971/
https://www.ncbi.nlm.nih.gov/pubmed/35732854
http://dx.doi.org/10.1038/s41598-022-13469-7
work_keys_str_mv AT schindlermichael modelingsynergisticeffectsbyusinggeneralhilltyperesponsesurfacesdescribingdruginteractions