Cargando…

Whey Protein Peptides Have Dual Functions: Bioactivity and Emulsifiers in Oil-In-Water Nanoemulsion

Whey protein isolate (WPI)-derived bioactive peptide fractions (1–3, 3–5, 5–10, 1–10, and >10 kDa) were for the first time used as emulsifiers in nanoemulsions. The formation and storage stability of WPI bioactive peptide-stabilized nanoemulsions depended on the peptide size, enzyme type, peptide...

Descripción completa

Detalles Bibliográficos
Autores principales: Adjonu, Randy, Doran, Gregory S., Torley, Peter, Sampson, Gilbert O., Agboola, Samson O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222674/
https://www.ncbi.nlm.nih.gov/pubmed/35742010
http://dx.doi.org/10.3390/foods11121812
Descripción
Sumario:Whey protein isolate (WPI)-derived bioactive peptide fractions (1–3, 3–5, 5–10, 1–10, and >10 kDa) were for the first time used as emulsifiers in nanoemulsions. The formation and storage stability of WPI bioactive peptide-stabilized nanoemulsions depended on the peptide size, enzyme type, peptide concentration, and storage temperature. The highly bioactive <10 kDa fractions were either poorly surface-active or weak stabilizers in nanoemulsions. The moderately bioactive >10 kDa fractions formed stable nanoemulsions (diameter = 174–196 nm); however, their performance was dependent on the peptide concentration (1–4%) and enzyme type. Overall, nanoemulsions exhibited better storage stability (less droplet growth and creaming) when stored at lower (4 °C) than at higher (25 °C) temperatures. This study has shown that by optimizing peptide size using ultrafiltration, enzyme type and emulsification conditions (emulsifier concentration and storage conditions), stable nanoemulsions can be produced using WPI-derived bioactive peptides, demonstrating the dual-functionality of WPI peptides.