Cargando…

The Removal of Erythromycin and Its Effects on Anaerobic Fermentation

In view of the problems of antibiotic pollution, anaerobic fermentation technology was adopted to remove erythromycin in this study. The removal of erythromycin and its effects mechanism on anaerobic fermentation were studied, including biogas performance, process stability, substrate degradability,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Huayong, Yin, Meixiao, Li, Shusen, Zhang, Shijia, Han, Guixuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223550/
https://www.ncbi.nlm.nih.gov/pubmed/35742505
http://dx.doi.org/10.3390/ijerph19127256
_version_ 1784733152161300480
author Zhang, Huayong
Yin, Meixiao
Li, Shusen
Zhang, Shijia
Han, Guixuan
author_facet Zhang, Huayong
Yin, Meixiao
Li, Shusen
Zhang, Shijia
Han, Guixuan
author_sort Zhang, Huayong
collection PubMed
description In view of the problems of antibiotic pollution, anaerobic fermentation technology was adopted to remove erythromycin in this study. The removal of erythromycin and its effects mechanism on anaerobic fermentation were studied, including biogas performance, process stability, substrate degradability, enzyme activity, and microbial communities. The results showed that the removal rates of erythromycin for all tested concentrations were higher than 90% after fermentation. Erythromycin addition inhibited biogas production. The more erythromycin added, the lower the CH(4) content obtained. The high concentration of erythromycin (20 and 40 mg/L) resulted in more remarkable variations of pH values than the control group and 1 mg/L erythromycin added during the fermentation process. Erythromycin inhibited the hydrolysis process in the early stage of anaerobic fermentation. The contents of chemical oxygen demand (COD), NH(4)(+)–N, and volatile fatty acids (VFA) of erythromycin added groups were lower than those of the control group. Erythromycin inhibited the degradation of lignocellulose in the late stage of fermentation. Cellulase activity increased first and then decreased during the fermentation and addition of erythromycin delayed the peak of cellulase activity. The inhibitory effect of erythromycin on the activity of coenzyme F(420) increased with elevated erythromycin concentrations. The relative abundance of archaea in erythromycin added groups was lower than the control group. The decrease in archaea resulted in the delay of the daily biogas peak. Additionally, the degradation rate of erythromycin was significantly correlated with the cumulative biogas yield, COD, pH, and ORP. This study supports the reutilization of antibiotic-contaminated biowaste and provides references for further research.
format Online
Article
Text
id pubmed-9223550
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92235502022-06-24 The Removal of Erythromycin and Its Effects on Anaerobic Fermentation Zhang, Huayong Yin, Meixiao Li, Shusen Zhang, Shijia Han, Guixuan Int J Environ Res Public Health Article In view of the problems of antibiotic pollution, anaerobic fermentation technology was adopted to remove erythromycin in this study. The removal of erythromycin and its effects mechanism on anaerobic fermentation were studied, including biogas performance, process stability, substrate degradability, enzyme activity, and microbial communities. The results showed that the removal rates of erythromycin for all tested concentrations were higher than 90% after fermentation. Erythromycin addition inhibited biogas production. The more erythromycin added, the lower the CH(4) content obtained. The high concentration of erythromycin (20 and 40 mg/L) resulted in more remarkable variations of pH values than the control group and 1 mg/L erythromycin added during the fermentation process. Erythromycin inhibited the hydrolysis process in the early stage of anaerobic fermentation. The contents of chemical oxygen demand (COD), NH(4)(+)–N, and volatile fatty acids (VFA) of erythromycin added groups were lower than those of the control group. Erythromycin inhibited the degradation of lignocellulose in the late stage of fermentation. Cellulase activity increased first and then decreased during the fermentation and addition of erythromycin delayed the peak of cellulase activity. The inhibitory effect of erythromycin on the activity of coenzyme F(420) increased with elevated erythromycin concentrations. The relative abundance of archaea in erythromycin added groups was lower than the control group. The decrease in archaea resulted in the delay of the daily biogas peak. Additionally, the degradation rate of erythromycin was significantly correlated with the cumulative biogas yield, COD, pH, and ORP. This study supports the reutilization of antibiotic-contaminated biowaste and provides references for further research. MDPI 2022-06-14 /pmc/articles/PMC9223550/ /pubmed/35742505 http://dx.doi.org/10.3390/ijerph19127256 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Huayong
Yin, Meixiao
Li, Shusen
Zhang, Shijia
Han, Guixuan
The Removal of Erythromycin and Its Effects on Anaerobic Fermentation
title The Removal of Erythromycin and Its Effects on Anaerobic Fermentation
title_full The Removal of Erythromycin and Its Effects on Anaerobic Fermentation
title_fullStr The Removal of Erythromycin and Its Effects on Anaerobic Fermentation
title_full_unstemmed The Removal of Erythromycin and Its Effects on Anaerobic Fermentation
title_short The Removal of Erythromycin and Its Effects on Anaerobic Fermentation
title_sort removal of erythromycin and its effects on anaerobic fermentation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223550/
https://www.ncbi.nlm.nih.gov/pubmed/35742505
http://dx.doi.org/10.3390/ijerph19127256
work_keys_str_mv AT zhanghuayong theremovaloferythromycinanditseffectsonanaerobicfermentation
AT yinmeixiao theremovaloferythromycinanditseffectsonanaerobicfermentation
AT lishusen theremovaloferythromycinanditseffectsonanaerobicfermentation
AT zhangshijia theremovaloferythromycinanditseffectsonanaerobicfermentation
AT hanguixuan theremovaloferythromycinanditseffectsonanaerobicfermentation
AT zhanghuayong removaloferythromycinanditseffectsonanaerobicfermentation
AT yinmeixiao removaloferythromycinanditseffectsonanaerobicfermentation
AT lishusen removaloferythromycinanditseffectsonanaerobicfermentation
AT zhangshijia removaloferythromycinanditseffectsonanaerobicfermentation
AT hanguixuan removaloferythromycinanditseffectsonanaerobicfermentation