Cargando…
DKK-1 Is Underexpressed in Mesenchymal Stem Cells from Patients with Ankylosing Spondylitis and Further Downregulated by IL-17
Dickkopf-1 (Dkk-1) is a key regulator of bone remodeling in spondyloarthropathies. Nevertheless, data regarding its expression in cells of pathophysiologic relevance, such as mesenchymal stem cells (MSCs), are lacking. Herein, we aimed to address DKK1 gene expression and Wnt pathway activation in MS...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224314/ https://www.ncbi.nlm.nih.gov/pubmed/35743102 http://dx.doi.org/10.3390/ijms23126660 |
Sumario: | Dickkopf-1 (Dkk-1) is a key regulator of bone remodeling in spondyloarthropathies. Nevertheless, data regarding its expression in cells of pathophysiologic relevance, such as mesenchymal stem cells (MSCs), are lacking. Herein, we aimed to address DKK1 gene expression and Wnt pathway activation in MSCs from patients with ankylosing spondylitis (AS) and explore the effect of IL-17 on MSCs with respect to DKK-1 expression and Wnt pathway activation. Primary MSCs were isolated from the bone marrow of the femoral head of two patients with AS and two healthy controls undergoing orthopedic surgery. MSCs were cultured for 7 days in expansion medium and for 21 days in osteogenic medium in the presence or absence of IL-17A. Gene expression of DKK-1 and osteoblastic markers was determined by RT-PCR. Alkaline phosphatase activity, alizarin red and Van Kossa staining were used to assess osteoblastic function and mineralization capacity. DKK-1 was significantly downregulated in MSCs and osteoblasts from patients with AS compared to controls. Moreover, MSCs and osteoblasts from AS patients displayed increased Wnt pathway activation and enhanced osteoblastic activity, as indicated by increased expression of osteoblast marker genes and alkaline phosphatase activity. IL-17 downregulated DKK-1 expression and increased osteoblastic activity and mineralization capacity. DKK-1 is underexpressed in MSCs from AS patients compared to controls, whereas IL-17 has an inhibitory effect on DKK-1 expression and stimulates osteoblastic function. These data may have pathogenetic and clinical implications in AS. |
---|