Cargando…

Bulge-Forming miRNases Cleave Oncogenic miRNAs at the Central Loop Region in a Sequence-Specific Manner

The selective degradation of disease-associated microRNA is promising for the development of new therapeutic approaches. In this study, we engineered a series of bulge-loop-forming oligonucleotides conjugated with catalytic peptide [(LeuArg)(2)Gly](2) (BC–miRNases) capable of recognizing and destroy...

Descripción completa

Detalles Bibliográficos
Autores principales: Patutina, Olga, Chiglintseva, Daria, Amirloo, Bahareh, Clarke, David, Gaponova, Svetlana, Vlassov, Valentin, Bichenkova, Elena, Zenkova, Marina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224474/
https://www.ncbi.nlm.nih.gov/pubmed/35743015
http://dx.doi.org/10.3390/ijms23126562
Descripción
Sumario:The selective degradation of disease-associated microRNA is promising for the development of new therapeutic approaches. In this study, we engineered a series of bulge-loop-forming oligonucleotides conjugated with catalytic peptide [(LeuArg)(2)Gly](2) (BC–miRNases) capable of recognizing and destroying oncogenic miR-17 and miR-21. The principle behind the design of BC–miRNase is the cleavage of miRNA at a three-nucleotide bulge loop that forms in the central loop region, which is essential for the biological competence of miRNA. A thorough study of mono- and bis-BC–miRNases (containing one or two catalytic peptides, respectively) revealed that: (i) the sequence of miRNA bulge loops and neighbouring motifs are of fundamental importance for efficient miRNA cleavage (i.e., motifs containing repeating pyrimidine–A bonds are more susceptible to cleavage); (ii) the incorporation of the second catalytic peptide in the same molecular scaffold increases the potency of BC–miRNase, providing a complete degradation of miR-17 within 72 h; (iii) the synergetic co-operation of BC–miRNases with RNase H accelerates the rate of miRNA catalytic cleavage by both the conjugate and the enzyme. Such synergy allows the rapid destruction of constantly emerging miRNA to maintain sufficient knockdown and achieve a desired therapeutic effect.