Cargando…

A supramodal and conceptual representation of subsecond time revealed with perceptual learning of temporal interval discrimination

Subsecond time perception has been frequently attributed to modality-specific timing mechanisms that would predict no cross-modal transfer of temporal perceptual learning. In fact, perceptual learning of temporal interval discrimination (TID) reportedly shows either no cross-modal transfer, or asymm...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Ying-Zi, Guan, Shu-Chen, Yu, Cong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226181/
https://www.ncbi.nlm.nih.gov/pubmed/35739220
http://dx.doi.org/10.1038/s41598-022-14698-6
Descripción
Sumario:Subsecond time perception has been frequently attributed to modality-specific timing mechanisms that would predict no cross-modal transfer of temporal perceptual learning. In fact, perceptual learning of temporal interval discrimination (TID) reportedly shows either no cross-modal transfer, or asymmetric transfer from audition to vision, but not vice versa. However, here we demonstrate complete cross-modal transfer of auditory and visual TID learning using a double training paradigm. Specifically, visual TID learning transfers to and optimizes auditory TID when the participants also receive exposure to the auditory temporal interval by practicing a functionally orthogonal near-threshold tone frequency discrimination task at the same trained interval. Auditory TID learning also transfers to and optimizes visual TID with additional practice of an orthogonal near-threshold visual contrast discrimination task at the same trained interval. Practicing these functionally orthogonal tasks per se has no impact on TID thresholds. We interpret the transfer results as indications of a supramodal representation of subsecond time. Moreover, because TID learning shows complete transfer between modalities with vastly different temporal precisions, the sub-second time presentation must be conceptual. Double training may refine this supramodal and conceptual subsecond time representation and connect it to a new sense to improve time perception.