Cargando…
Synthesis and Antileukemia Activity Evaluation of Benzophenanthridine Alkaloid Derivatives
Thirty-three benzophenanthridine alkaloid derivatives (1a–1u and 2a–2l) were synthesized, and their cytotoxic activities against two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were evaluated in vitro using a Cell Counting Kit-8 (CCK-8) assay. Nine of these derivatives (1i–l, 2a, and 2i–l) wit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227418/ https://www.ncbi.nlm.nih.gov/pubmed/35745057 http://dx.doi.org/10.3390/molecules27123934 |
Sumario: | Thirty-three benzophenanthridine alkaloid derivatives (1a–1u and 2a–2l) were synthesized, and their cytotoxic activities against two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were evaluated in vitro using a Cell Counting Kit-8 (CCK-8) assay. Nine of these derivatives (1i–l, 2a, and 2i–l) with IC(50) values in the range of 0.18–7.94 μM showed significant inhibitory effects on the proliferation of both cancer cell lines. Analysis of the primary structure–activity relationships revealed that different substituent groups at the C-6 position might have an effect on the antileukemia activity of the corresponding compounds. In addition, the groups at the C-7 and C-8 positions could influence the antileukemia activity. Among these compounds, 2j showed the strongest in vitro antiproliferative activity against Jurkat Clone E6-1 and THP-1 cells with good IC(50) values (0.52 ± 0.03 μM and 0.48 ± 0.03 μM, respectively), slightly induced apoptosis, and arrested the cell-cycle, all of which suggests that compound 2j may represent a potentially useful start point to undergo further optimization toward a lead compound. |
---|