Cargando…
Probabilistic Traffic Motion Labeling for Multi-Modal Vehicle Route Prediction
The prediction of the motion of traffic participants is a crucial aspect for the research and development of Automated Driving Systems (ADSs). Recent approaches are based on multi-modal motion prediction, which requires the assignment of a probability score to each of the multiple predicted motion h...
Autores principales: | Flores Fernández, Alberto, Wurst, Jonas, Sánchez Morales, Eduardo, Botsch, Michael, Facchi, Christian, García Higuera, Andrés |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228008/ https://www.ncbi.nlm.nih.gov/pubmed/35746294 http://dx.doi.org/10.3390/s22124498 |
Ejemplares similares
-
Generation of Correction Data for Autonomous Driving by Means of Machine Learning and On-Board Diagnostics
por: Flores Fernández, Alberto, et al.
Publicado: (2022) -
High Precision Outdoor and Indoor Reference State Estimation for Testing Autonomous Vehicles †
por: Sánchez Morales, Eduardo, et al.
Publicado: (2021) -
Optimization and incorporating of green traffic for dynamic vehicle routing problem with perishable products
por: Talouki, Reza Zakaryaei, et al.
Publicado: (2021) -
A Combined Modal and Route Choice Behavioral Complementarity Equilibrium Model with Users of Vehicles and Electric Bicycles
por: Zhu, Senlai, et al.
Publicado: (2020) -
Computational Efficient Motion Planning Method for Automated Vehicles Considering Dynamic Obstacle Avoidance and Traffic Interaction
por: Zhang, Yuxiang, et al.
Publicado: (2022)