Cargando…
Development of a Vision-Guided Shared-Control System for Assistive Robotic Manipulators
Assistive robotic manipulators (ARMs) provide a potential solution to mitigating the difficulties and lost independence associated with manipulation deficits in individuals with upper-limb impairments. However, achieving efficient control of an ARM can be a challenge due to the multiple degrees of f...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228253/ https://www.ncbi.nlm.nih.gov/pubmed/35746131 http://dx.doi.org/10.3390/s22124351 |
Sumario: | Assistive robotic manipulators (ARMs) provide a potential solution to mitigating the difficulties and lost independence associated with manipulation deficits in individuals with upper-limb impairments. However, achieving efficient control of an ARM can be a challenge due to the multiple degrees of freedom (DoFs) of an ARM that need to be controlled. This study describes the development of a vision-guided shared-control (VGS) system and how it is applied to a multi-step drinking task. The VGS control allows the user to control the gross motion of the ARM via teleoperation and commands the ARM to autonomously perform fine manipulation. A bench-top test of the autonomous actions showed that success rates for different subtasks ranged from 80% to 100%. An evaluation with three test pilots showed that the overall task performance, in terms of success rate, task completion time, and joystick mode-switch frequency, was better with VGS than with teleoperation. Similar trends were observed with a case participant with a spinal cord injury. While his performance was better and he perceived a smaller workload with VGS, his perceived usability for VGS and teleoperation was similar. More work is needed to further improve and test VGS on participants with disabilities. |
---|