Cargando…
Use of Artificial Intelligence Methods for Predicting the Strength of Recycled Aggregate Concrete and the Influence of Raw Ingredients
Cracking is one of the main problems in concrete structures and is affected by various parameters. The step-by-step laboratory method, which includes casting specimens, curing for a certain period, and testing, remains a source of worry in terms of cost and time. Novel machine learning methods for a...
Autores principales: | Pan, Xinchen, Xiao, Yixuan, Suhail, Salman Ali, Ahmad, Waqas, Murali, Gunasekaran, Salmi, Abdelatif, Mohamed, Abdullah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229192/ https://www.ncbi.nlm.nih.gov/pubmed/35744254 http://dx.doi.org/10.3390/ma15124194 |
Ejemplares similares
-
Investigating the Ultrasonic Pulse Velocity of Concrete Containing Waste Marble Dust and Its Estimation Using Artificial Intelligence
por: Yang, Dawei, et al.
Publicado: (2022) -
Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
por: Bu, Liangtao, et al.
Publicado: (2021) -
Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete
por: Yuan, Xiongzhou, et al.
Publicado: (2022)