Cargando…

Time-Varying Pseudorandom Disturbed Pattern Generation Algorithm for Track Circuit Equipment Testing

To improve the test accuracy and fault coverage of high-speed railway-related equipment boards, a time-varying pseudorandom disturbance algorithm based on the automatic test pattern generation technology in chip testing is proposed. The algorithm combines the pseudorandom pattern generation algorith...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiaoming, Wang, Zhixuan, Yu, Zhiyang, Chui, Hsiang-Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229937/
https://www.ncbi.nlm.nih.gov/pubmed/35744467
http://dx.doi.org/10.3390/mi13060853
Descripción
Sumario:To improve the test accuracy and fault coverage of high-speed railway-related equipment boards, a time-varying pseudorandom disturbance algorithm based on the automatic test pattern generation technology in chip testing is proposed. The algorithm combines the pseudorandom pattern generation algorithm with the deterministic pattern generation D algorithm. The existing pseudorandom number generation method usually requires random seeds to generate a series of pseudorandom numbers. In this algorithm, the system timer is used as the random seed to design a pseudorandom pattern generation method of time-varying seed to improve the randomness of pseudorandom pattern generation. In addition, in combination with the D algorithm, this work proposes a new switching logic between two algorithms by counting invalid pattern proportions. When the algorithm is applied to track a circuit netlist, the fault coverage can reach near 100%. However, the large-scale circuit fault coverage cannot easily reach 100%. The test results for the standard circuits of different sizes show that at the same time, compared with the independent pattern generation methods, the proposed algorithm can improve fault coverage by more than 50% and 30% and significantly improve the pattern generation efficiency. Therefore, it can be used perfectly in the subsequent construction of high-speed railway equipment test platforms.