Cargando…
Effect of Substrate-RF on Sub-200 nm Al(0.7)Sc(0.3)N Thin Films
Sc-doped aluminum nitride is emerging as a new piezoelectric material which can substitute undoped aluminum nitride (AlN) in radio-frequency MEMS applications, thanks to its demonstrated enhancement of the piezoelectric coefficients. Furthermore, the recent demonstration of the ferroelectric-switchi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230010/ https://www.ncbi.nlm.nih.gov/pubmed/35744493 http://dx.doi.org/10.3390/mi13060877 |
_version_ | 1784734945957117952 |
---|---|
author | Pirro, Michele Zhao, Xuanyi Herrera, Bernard Simeoni, Pietro Rinaldi, Matteo |
author_facet | Pirro, Michele Zhao, Xuanyi Herrera, Bernard Simeoni, Pietro Rinaldi, Matteo |
author_sort | Pirro, Michele |
collection | PubMed |
description | Sc-doped aluminum nitride is emerging as a new piezoelectric material which can substitute undoped aluminum nitride (AlN) in radio-frequency MEMS applications, thanks to its demonstrated enhancement of the piezoelectric coefficients. Furthermore, the recent demonstration of the ferroelectric-switching capability of the material gives AlScN the possibility to integrate memory functionalities in RF components. However, its high-coercive field and high-leakage currents are limiting its applicability. Residual stress, growth on different substrates, and testing-temperature have already been demonstrated as possible knobs to flatten the energy barrier needed for switching, but no investigation has been reported yet on the whole impact on the dielectric and ferroelectric dynamic behavior of a single process parameter. In this context, we analyze the complete spectrum of variations induced by the applied substrate-RF, from deposition characteristics to dielectric and ferroelectric properties, proving its effect on all of the material attributes. In particular, we demonstrate the possibility of engineering the AlScN lattice cell to properly modify leakage, breakdown, and coercive fields, as well as polarization charge, without altering the crystallinity level, making substrate-RF an effective and efficient fabrication knob to ease the limitations the material is facing. |
format | Online Article Text |
id | pubmed-9230010 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92300102022-06-25 Effect of Substrate-RF on Sub-200 nm Al(0.7)Sc(0.3)N Thin Films Pirro, Michele Zhao, Xuanyi Herrera, Bernard Simeoni, Pietro Rinaldi, Matteo Micromachines (Basel) Article Sc-doped aluminum nitride is emerging as a new piezoelectric material which can substitute undoped aluminum nitride (AlN) in radio-frequency MEMS applications, thanks to its demonstrated enhancement of the piezoelectric coefficients. Furthermore, the recent demonstration of the ferroelectric-switching capability of the material gives AlScN the possibility to integrate memory functionalities in RF components. However, its high-coercive field and high-leakage currents are limiting its applicability. Residual stress, growth on different substrates, and testing-temperature have already been demonstrated as possible knobs to flatten the energy barrier needed for switching, but no investigation has been reported yet on the whole impact on the dielectric and ferroelectric dynamic behavior of a single process parameter. In this context, we analyze the complete spectrum of variations induced by the applied substrate-RF, from deposition characteristics to dielectric and ferroelectric properties, proving its effect on all of the material attributes. In particular, we demonstrate the possibility of engineering the AlScN lattice cell to properly modify leakage, breakdown, and coercive fields, as well as polarization charge, without altering the crystallinity level, making substrate-RF an effective and efficient fabrication knob to ease the limitations the material is facing. MDPI 2022-05-31 /pmc/articles/PMC9230010/ /pubmed/35744493 http://dx.doi.org/10.3390/mi13060877 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pirro, Michele Zhao, Xuanyi Herrera, Bernard Simeoni, Pietro Rinaldi, Matteo Effect of Substrate-RF on Sub-200 nm Al(0.7)Sc(0.3)N Thin Films |
title | Effect of Substrate-RF on Sub-200 nm Al(0.7)Sc(0.3)N Thin Films |
title_full | Effect of Substrate-RF on Sub-200 nm Al(0.7)Sc(0.3)N Thin Films |
title_fullStr | Effect of Substrate-RF on Sub-200 nm Al(0.7)Sc(0.3)N Thin Films |
title_full_unstemmed | Effect of Substrate-RF on Sub-200 nm Al(0.7)Sc(0.3)N Thin Films |
title_short | Effect of Substrate-RF on Sub-200 nm Al(0.7)Sc(0.3)N Thin Films |
title_sort | effect of substrate-rf on sub-200 nm al(0.7)sc(0.3)n thin films |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230010/ https://www.ncbi.nlm.nih.gov/pubmed/35744493 http://dx.doi.org/10.3390/mi13060877 |
work_keys_str_mv | AT pirromichele effectofsubstraterfonsub200nmal07sc03nthinfilms AT zhaoxuanyi effectofsubstraterfonsub200nmal07sc03nthinfilms AT herrerabernard effectofsubstraterfonsub200nmal07sc03nthinfilms AT simeonipietro effectofsubstraterfonsub200nmal07sc03nthinfilms AT rinaldimatteo effectofsubstraterfonsub200nmal07sc03nthinfilms |