Cargando…

Design, Analysis and Experimental Investigations of a Double-Arm Based Micro-Gripper for Thin and Flexible Metal Wires Manipulation

A robotic system for the automatic wire pulling of coreless motor winding is designed, including the design of an opening-closing control system and a micro-gripper’s tip structure with a double-armed elastic-beam structure for the support part and an enveloping clamping structure for the tip part....

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yuezong, Chen, Jiqiang, Qu, Daoduo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230965/
https://www.ncbi.nlm.nih.gov/pubmed/35744540
http://dx.doi.org/10.3390/mi13060925
Descripción
Sumario:A robotic system for the automatic wire pulling of coreless motor winding is designed, including the design of an opening-closing control system and a micro-gripper’s tip structure with a double-armed elastic-beam structure for the support part and an enveloping clamping structure for the tip part. The micro-gripper captures the electrode wire from the root, encircles the wire after the envelope region is closed, and the thin and flexible electrode wire is pulled to the top of the electrode pad by the movement of the micro-gripper and released. The mechanical index of the micro-gripper is simulated to obtain the optimal structural parameters. The experimental results show that the electrode wire’s maximum bearing force is about 0.3 N. Under this reaction force, the deformation of the tip-envelope region of the micro-gripper is about 27.5 μm, which is sufficient for electrode wire pulling micro-manipulation. By comparison with the steel micro-gripper, the silicon micro-gripper has more advantages in shape integrity, machinability and mechanical properties.