Cargando…
GPU-Accelerated PD-IPM for Real-Time Model Predictive Control in Integrated Missile Guidance and Control Systems
This paper addresses the problem of real-time model predictive control (MPC) in the integrated guidance and control (IGC) of missile systems. When the primal-dual interior point method (PD-IPM), which is a convex optimization method, is used as an optimization solution for the MPC, the real-time per...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231268/ https://www.ncbi.nlm.nih.gov/pubmed/35746292 http://dx.doi.org/10.3390/s22124512 |
Sumario: | This paper addresses the problem of real-time model predictive control (MPC) in the integrated guidance and control (IGC) of missile systems. When the primal-dual interior point method (PD-IPM), which is a convex optimization method, is used as an optimization solution for the MPC, the real-time performance of PD-IPM degenerates due to the elevated computation time in checking the Karush–Kuhn–Tucker (KKT) conditions in PD-IPM. This paper proposes a graphics processing unit (GPU)-based method to parallelize and accelerate PD-IPM for real-time MPC. The real-time performance of the proposed method was tested and analyzed on a widely-used embedded system. The comparison results with the conventional PD-IPM and other methods showed that the proposed method improved the real-time performance by reducing the computation time significantly. |
---|